SageMaker Core
Introduction
Welcome to the sagemaker-core Python SDK, an SDK designed to provide an object-oriented interface for interacting with Amazon SageMaker resources. It offers full parity with SageMaker APIs, allowing developers to leverage all SageMaker capabilities directly through the SDK. sagemaker-core introduces features such as dedicated resource classes, resource chaining, auto code completion, comprehensive documentation and type hints to enhance the developer experience as well as productivity.
Key Features
Object-Oriented Interface: Provides a structured way to interact with SageMaker resources, making it easier to manage them using familiar object-oriented programming techniques.
Resource Chaining: Allows seamless connection of SageMaker resources by passing outputs as inputs between them, simplifying workflows and reducing the complexity of parameter management.
Full Parity with SageMaker APIs: Ensures access to all SageMaker capabilities through the SDK, providing a comprehensive toolset for building and deploying machine learning models.
Abstraction of Low-Level Details: Automatically handles resource state transitions and polling logic, freeing developers from managing these intricacies and allowing them to focus on higher-level tasks.
Auto Code Completion: Enhances the developer experience by offering real-time suggestions and completions in popular IDEs, reducing syntax errors and speeding up the coding process.
Comprehensive Documentation and Type Hints: Provides detailed guidance and type hints to help developers understand functionalities, write code faster, and reduce errors without complex API navigation.
Incorporation of Intelligent Defaults: Integrates the previous SageMaker SDK feature of intelligent defaults, allowing developers to set default values for parameters like IAM roles and VPC configurations. This streamlines the setup process, enabling developers to focus on customizations specific to their use case.
Benefits
Simplified Development: By abstracting low-level details and providing intelligent defaults, developers can focus on building and deploying machine learning models without getting bogged down by repetitive tasks.
Increased Productivity: The SDK’s features, such as auto code completion and type hints, help developers write code faster and with fewer errors.
Enhanced Readability: Resource chaining and dedicated resource classes result in more readable and maintainable code.
Docs and Examples
Learn more about the sagemaker-core SDK and its features by visting the What’s New Announcement.
For examples and walkthroughs, see the SageMaker Core Examples.
For detailed documentation, including the API reference, see Read the Docs.
SageMaker Core Resources
- class sagemaker_core.main.resources.Action(*, action_name, action_arn=<sagemaker_core.main.utils.Unassigned object>, source=<sagemaker_core.main.utils.Unassigned object>, action_type=<sagemaker_core.main.utils.Unassigned object>, description=<sagemaker_core.main.utils.Unassigned object>, status=<sagemaker_core.main.utils.Unassigned object>, properties=<sagemaker_core.main.utils.Unassigned object>, creation_time=<sagemaker_core.main.utils.Unassigned object>, created_by=<sagemaker_core.main.utils.Unassigned object>, last_modified_time=<sagemaker_core.main.utils.Unassigned object>, last_modified_by=<sagemaker_core.main.utils.Unassigned object>, metadata_properties=<sagemaker_core.main.utils.Unassigned object>, lineage_group_arn=<sagemaker_core.main.utils.Unassigned object>)[source]
Class representing resource Action
- Parameters:
action_name (str)
action_arn (str | None)
source (ActionSource | None)
action_type (str | None)
description (str | None)
status (str | None)
creation_time (datetime | None)
created_by (UserContext | None)
last_modified_time (datetime | None)
last_modified_by (UserContext | None)
metadata_properties (MetadataProperties | None)
lineage_group_arn (str | None)
- action_name
The name of the action.
- Type:
- action_arn
The Amazon Resource Name (ARN) of the action.
- Type:
str | None
- source
The source of the action.
- Type:
sagemaker_core.main.shapes.ActionSource | None
- action_type
The type of the action.
- Type:
str | None
- description
The description of the action.
- Type:
str | None
- status
The status of the action.
- Type:
str | None
- creation_time
When the action was created.
- Type:
datetime.datetime | None
- created_by
- Type:
sagemaker_core.main.shapes.UserContext | None
- last_modified_time
When the action was last modified.
- Type:
datetime.datetime | None
- last_modified_by
- Type:
sagemaker_core.main.shapes.UserContext | None
- metadata_properties
- Type:
sagemaker_core.main.shapes.MetadataProperties | None
- lineage_group_arn
The Amazon Resource Name (ARN) of the lineage group.
- Type:
str | None
- classmethod create(action_name, source, action_type, description=<sagemaker_core.main.utils.Unassigned object>, status=<sagemaker_core.main.utils.Unassigned object>, properties=<sagemaker_core.main.utils.Unassigned object>, metadata_properties=<sagemaker_core.main.utils.Unassigned object>, tags=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Create a Action resource
- Parameters:
action_name (str) – The name of the action. Must be unique to your account in an Amazon Web Services Region.
source (ActionSource) – The source type, ID, and URI.
action_type (str) – The action type.
description (str | None) – The description of the action.
status (str | None) – The status of the action.
properties (Dict[str, str] | None) – A list of properties to add to the action.
metadata_properties (MetadataProperties | None)
tags (List[Tag] | None) – A list of tags to apply to the action.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
The Action resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
ConfigSchemaValidationError – Raised when a configuration file does not adhere to the schema
LocalConfigNotFoundError – Raised when a configuration file is not found in local file system
S3ConfigNotFoundError – Raised when a configuration file is not found in S3
- Return type:
Action | None
- delete()[source]
Delete a Action resource
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
None
- classmethod get(action_name, session=None, region=None)[source]
Get a Action resource
- Parameters:
- Returns:
The Action resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
Action | None
- classmethod get_all(source_uri=<sagemaker_core.main.utils.Unassigned object>, action_type=<sagemaker_core.main.utils.Unassigned object>, created_after=<sagemaker_core.main.utils.Unassigned object>, created_before=<sagemaker_core.main.utils.Unassigned object>, sort_by=<sagemaker_core.main.utils.Unassigned object>, sort_order=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Get all Action resources
- Parameters:
source_uri (str | None) – A filter that returns only actions with the specified source URI.
action_type (str | None) – A filter that returns only actions of the specified type.
created_after (datetime | None) – A filter that returns only actions created on or after the specified time.
created_before (datetime | None) – A filter that returns only actions created on or before the specified time.
sort_by (str | None) – The property used to sort results. The default value is CreationTime.
sort_order (str | None) – The sort order. The default value is Descending.
next_token – If the previous call to ListActions didn’t return the full set of actions, the call returns a token for getting the next set of actions.
max_results – The maximum number of actions to return in the response. The default value is 10.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
Iterator for listed Action resources.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
ResourceIterator[Action]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'protected_namespaces': (), 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- refresh()[source]
Refresh a Action resource
- Returns:
The Action resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
Action | None
- update(description=<sagemaker_core.main.utils.Unassigned object>, status=<sagemaker_core.main.utils.Unassigned object>, properties=<sagemaker_core.main.utils.Unassigned object>, properties_to_remove=<sagemaker_core.main.utils.Unassigned object>)[source]
Update a Action resource
- Parameters:
- Returns:
The Action resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ConflictException – There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.
ResourceNotFound – Resource being access is not found.
- Return type:
Action | None
- class sagemaker_core.main.resources.Algorithm(*, algorithm_name, algorithm_arn=<sagemaker_core.main.utils.Unassigned object>, algorithm_description=<sagemaker_core.main.utils.Unassigned object>, creation_time=<sagemaker_core.main.utils.Unassigned object>, training_specification=<sagemaker_core.main.utils.Unassigned object>, inference_specification=<sagemaker_core.main.utils.Unassigned object>, validation_specification=<sagemaker_core.main.utils.Unassigned object>, algorithm_status=<sagemaker_core.main.utils.Unassigned object>, algorithm_status_details=<sagemaker_core.main.utils.Unassigned object>, product_id=<sagemaker_core.main.utils.Unassigned object>, certify_for_marketplace=<sagemaker_core.main.utils.Unassigned object>)[source]
Class representing resource Algorithm
- Parameters:
algorithm_name (str)
algorithm_arn (str | None)
algorithm_description (str | None)
creation_time (datetime | None)
training_specification (TrainingSpecification | None)
inference_specification (InferenceSpecification | None)
validation_specification (AlgorithmValidationSpecification | None)
algorithm_status (str | None)
algorithm_status_details (AlgorithmStatusDetails | None)
product_id (str | None)
certify_for_marketplace (bool | None)
- algorithm_name
The name of the algorithm being described.
- Type:
- algorithm_arn
The Amazon Resource Name (ARN) of the algorithm.
- Type:
str | None
- creation_time
A timestamp specifying when the algorithm was created.
- Type:
datetime.datetime | None
- training_specification
Details about training jobs run by this algorithm.
- Type:
sagemaker_core.main.shapes.TrainingSpecification | None
- algorithm_status
The current status of the algorithm.
- Type:
str | None
- algorithm_status_details
Details about the current status of the algorithm.
- Type:
sagemaker_core.main.shapes.AlgorithmStatusDetails | None
- algorithm_description
A brief summary about the algorithm.
- Type:
str | None
- inference_specification
Details about inference jobs that the algorithm runs.
- Type:
sagemaker_core.main.shapes.InferenceSpecification | None
- validation_specification
Details about configurations for one or more training jobs that SageMaker runs to test the algorithm.
- Type:
sagemaker_core.main.shapes.AlgorithmValidationSpecification | None
- product_id
The product identifier of the algorithm.
- Type:
str | None
- certify_for_marketplace
Whether the algorithm is certified to be listed in Amazon Web Services Marketplace.
- Type:
bool | None
- classmethod create(algorithm_name, training_specification, algorithm_description=<sagemaker_core.main.utils.Unassigned object>, inference_specification=<sagemaker_core.main.utils.Unassigned object>, validation_specification=<sagemaker_core.main.utils.Unassigned object>, certify_for_marketplace=<sagemaker_core.main.utils.Unassigned object>, tags=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Create a Algorithm resource
- Parameters:
algorithm_name (str) – The name of the algorithm.
training_specification (TrainingSpecification) – Specifies details about training jobs run by this algorithm, including the following: The Amazon ECR path of the container and the version digest of the algorithm. The hyperparameters that the algorithm supports. The instance types that the algorithm supports for training. Whether the algorithm supports distributed training. The metrics that the algorithm emits to Amazon CloudWatch. Which metrics that the algorithm emits can be used as the objective metric for hyperparameter tuning jobs. The input channels that the algorithm supports for training data. For example, an algorithm might support train, validation, and test channels.
algorithm_description (str | None) – A description of the algorithm.
inference_specification (InferenceSpecification | None) – Specifies details about inference jobs that the algorithm runs, including the following: The Amazon ECR paths of containers that contain the inference code and model artifacts. The instance types that the algorithm supports for transform jobs and real-time endpoints used for inference. The input and output content formats that the algorithm supports for inference.
validation_specification (AlgorithmValidationSpecification | None) – Specifies configurations for one or more training jobs and that SageMaker runs to test the algorithm’s training code and, optionally, one or more batch transform jobs that SageMaker runs to test the algorithm’s inference code.
certify_for_marketplace (bool | None) – Whether to certify the algorithm so that it can be listed in Amazon Web Services Marketplace.
tags (List[Tag] | None) – An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
The Algorithm resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ConfigSchemaValidationError – Raised when a configuration file does not adhere to the schema
LocalConfigNotFoundError – Raised when a configuration file is not found in local file system
S3ConfigNotFoundError – Raised when a configuration file is not found in S3
- Return type:
Algorithm | None
- delete()[source]
Delete a Algorithm resource
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ConflictException – There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.
- Return type:
None
- classmethod get(algorithm_name, session=None, region=None)[source]
Get a Algorithm resource
- Parameters:
- Returns:
The Algorithm resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
Algorithm | None
- classmethod get_all(creation_time_after=<sagemaker_core.main.utils.Unassigned object>, creation_time_before=<sagemaker_core.main.utils.Unassigned object>, name_contains=<sagemaker_core.main.utils.Unassigned object>, sort_by=<sagemaker_core.main.utils.Unassigned object>, sort_order=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Get all Algorithm resources
- Parameters:
creation_time_after (datetime | None) – A filter that returns only algorithms created after the specified time (timestamp).
creation_time_before (datetime | None) – A filter that returns only algorithms created before the specified time (timestamp).
max_results – The maximum number of algorithms to return in the response.
name_contains (str | None) – A string in the algorithm name. This filter returns only algorithms whose name contains the specified string.
next_token – If the response to a previous ListAlgorithms request was truncated, the response includes a NextToken. To retrieve the next set of algorithms, use the token in the next request.
sort_by (str | None) – The parameter by which to sort the results. The default is CreationTime.
sort_order (str | None) – The sort order for the results. The default is Ascending.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
Iterator for listed Algorithm resources.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
ResourceIterator[Algorithm]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'protected_namespaces': (), 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- refresh()[source]
Refresh a Algorithm resource
- Returns:
The Algorithm resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
Algorithm | None
- wait_for_delete(poll=5, timeout=None)[source]
Wait for a Algorithm resource to be deleted.
- Parameters:
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
TimeoutExceededError – If the resource does not reach a terminal state before the timeout.
DeleteFailedStatusError – If the resource reaches a failed state.
WaiterError – Raised when an error occurs while waiting.
- Return type:
None
- wait_for_status(target_status, poll=5, timeout=None)[source]
Wait for a Algorithm resource to reach certain status.
- Parameters:
- Raises:
TimeoutExceededError – If the resource does not reach a terminal state before the timeout.
FailedStatusError – If the resource reaches a failed state.
WaiterError – Raised when an error occurs while waiting.
- Return type:
None
- class sagemaker_core.main.resources.App(*, domain_id, app_type, app_name, app_arn=<sagemaker_core.main.utils.Unassigned object>, user_profile_name=<sagemaker_core.main.utils.Unassigned object>, space_name=<sagemaker_core.main.utils.Unassigned object>, status=<sagemaker_core.main.utils.Unassigned object>, last_health_check_timestamp=<sagemaker_core.main.utils.Unassigned object>, last_user_activity_timestamp=<sagemaker_core.main.utils.Unassigned object>, creation_time=<sagemaker_core.main.utils.Unassigned object>, failure_reason=<sagemaker_core.main.utils.Unassigned object>, resource_spec=<sagemaker_core.main.utils.Unassigned object>, built_in_lifecycle_config_arn=<sagemaker_core.main.utils.Unassigned object>)[source]
Class representing resource App
- Parameters:
domain_id (str)
app_type (str)
app_name (str)
app_arn (str | None)
user_profile_name (str | None)
space_name (str | None)
status (str | None)
last_health_check_timestamp (datetime | None)
last_user_activity_timestamp (datetime | None)
creation_time (datetime | None)
failure_reason (str | None)
resource_spec (ResourceSpec | None)
built_in_lifecycle_config_arn (str | None)
- app_arn
The Amazon Resource Name (ARN) of the app.
- Type:
str | None
- app_type
The type of app.
- Type:
- app_name
The name of the app.
- Type:
- domain_id
The domain ID.
- Type:
- user_profile_name
The user profile name.
- Type:
str | None
- space_name
The name of the space. If this value is not set, then UserProfileName must be set.
- Type:
str | None
- status
The status.
- Type:
str | None
- last_health_check_timestamp
The timestamp of the last health check.
- Type:
datetime.datetime | None
- last_user_activity_timestamp
The timestamp of the last user’s activity. LastUserActivityTimestamp is also updated when SageMaker performs health checks without user activity. As a result, this value is set to the same value as LastHealthCheckTimestamp.
- Type:
datetime.datetime | None
- creation_time
The creation time of the application. After an application has been shut down for 24 hours, SageMaker deletes all metadata for the application. To be considered an update and retain application metadata, applications must be restarted within 24 hours after the previous application has been shut down. After this time window, creation of an application is considered a new application rather than an update of the previous application.
- Type:
datetime.datetime | None
- failure_reason
The failure reason.
- Type:
str | None
- resource_spec
The instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
- Type:
sagemaker_core.main.shapes.ResourceSpec | None
- built_in_lifecycle_config_arn
The lifecycle configuration that runs before the default lifecycle configuration
- Type:
str | None
- classmethod create(domain_id, app_type, app_name, user_profile_name=<sagemaker_core.main.utils.Unassigned object>, space_name=<sagemaker_core.main.utils.Unassigned object>, tags=<sagemaker_core.main.utils.Unassigned object>, resource_spec=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Create a App resource
- Parameters:
domain_id (str) – The domain ID.
app_type (str) – The type of app.
app_name (str) – The name of the app.
user_profile_name (str | object | None) – The user profile name. If this value is not set, then SpaceName must be set.
space_name (str | object | None) – The name of the space. If this value is not set, then UserProfileName must be set.
tags (List[Tag] | None) – Each tag consists of a key and an optional value. Tag keys must be unique per resource.
resource_spec (ResourceSpec | None) – The instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance. The value of InstanceType passed as part of the ResourceSpec in the CreateApp call overrides the value passed as part of the ResourceSpec configured for the user profile or the domain. If InstanceType is not specified in any of those three ResourceSpec values for a KernelGateway app, the CreateApp call fails with a request validation error.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
The App resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceInUse – Resource being accessed is in use.
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
ConfigSchemaValidationError – Raised when a configuration file does not adhere to the schema
LocalConfigNotFoundError – Raised when a configuration file is not found in local file system
S3ConfigNotFoundError – Raised when a configuration file is not found in S3
- Return type:
App | None
- delete()[source]
Delete a App resource
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceInUse – Resource being accessed is in use.
ResourceNotFound – Resource being access is not found.
- Return type:
None
- classmethod get(domain_id, app_type, app_name, user_profile_name=<sagemaker_core.main.utils.Unassigned object>, space_name=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Get a App resource
- Parameters:
domain_id (str) – The domain ID.
app_type (str) – The type of app.
app_name (str) – The name of the app.
user_profile_name (str | None) – The user profile name. If this value is not set, then SpaceName must be set.
space_name (str | None) – The name of the space.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
The App resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
App | None
- classmethod get_all(sort_order=<sagemaker_core.main.utils.Unassigned object>, sort_by=<sagemaker_core.main.utils.Unassigned object>, domain_id_equals=<sagemaker_core.main.utils.Unassigned object>, user_profile_name_equals=<sagemaker_core.main.utils.Unassigned object>, space_name_equals=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Get all App resources
- Parameters:
next_token – If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.
max_results – This parameter defines the maximum number of results that can be return in a single response. The MaxResults parameter is an upper bound, not a target. If there are more results available than the value specified, a NextToken is provided in the response. The NextToken indicates that the user should get the next set of results by providing this token as a part of a subsequent call. The default value for MaxResults is 10.
sort_order (str | None) – The sort order for the results. The default is Ascending.
sort_by (str | None) – The parameter by which to sort the results. The default is CreationTime.
domain_id_equals (str | None) – A parameter to search for the domain ID.
user_profile_name_equals (str | None) – A parameter to search by user profile name. If SpaceNameEquals is set, then this value cannot be set.
space_name_equals (str | None) – A parameter to search by space name. If UserProfileNameEquals is set, then this value cannot be set.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
Iterator for listed App resources.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
ResourceIterator[App]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'protected_namespaces': (), 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- refresh()[source]
Refresh a App resource
- Returns:
The App resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
App | None
- wait_for_delete(poll=5, timeout=None)[source]
Wait for a App resource to be deleted.
- Parameters:
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
TimeoutExceededError – If the resource does not reach a terminal state before the timeout.
DeleteFailedStatusError – If the resource reaches a failed state.
WaiterError – Raised when an error occurs while waiting.
- Return type:
None
- wait_for_status(target_status, poll=5, timeout=None)[source]
Wait for a App resource to reach certain status.
- Parameters:
- Raises:
TimeoutExceededError – If the resource does not reach a terminal state before the timeout.
FailedStatusError – If the resource reaches a failed state.
WaiterError – Raised when an error occurs while waiting.
- Return type:
None
- class sagemaker_core.main.resources.AppImageConfig(*, app_image_config_name, app_image_config_arn=<sagemaker_core.main.utils.Unassigned object>, creation_time=<sagemaker_core.main.utils.Unassigned object>, last_modified_time=<sagemaker_core.main.utils.Unassigned object>, kernel_gateway_image_config=<sagemaker_core.main.utils.Unassigned object>, jupyter_lab_app_image_config=<sagemaker_core.main.utils.Unassigned object>, code_editor_app_image_config=<sagemaker_core.main.utils.Unassigned object>)[source]
Class representing resource AppImageConfig
- Parameters:
app_image_config_name (str)
app_image_config_arn (str | None)
creation_time (datetime | None)
last_modified_time (datetime | None)
kernel_gateway_image_config (KernelGatewayImageConfig | None)
jupyter_lab_app_image_config (JupyterLabAppImageConfig | None)
code_editor_app_image_config (CodeEditorAppImageConfig | None)
- app_image_config_arn
The ARN of the AppImageConfig.
- Type:
str | None
- app_image_config_name
The name of the AppImageConfig.
- Type:
- creation_time
When the AppImageConfig was created.
- Type:
datetime.datetime | None
- last_modified_time
When the AppImageConfig was last modified.
- Type:
datetime.datetime | None
- kernel_gateway_image_config
The configuration of a KernelGateway app.
- Type:
sagemaker_core.main.shapes.KernelGatewayImageConfig | None
- jupyter_lab_app_image_config
The configuration of the JupyterLab app.
- Type:
sagemaker_core.main.shapes.JupyterLabAppImageConfig | None
- code_editor_app_image_config
The configuration of the Code Editor app.
- Type:
sagemaker_core.main.shapes.CodeEditorAppImageConfig | None
- classmethod create(app_image_config_name, tags=<sagemaker_core.main.utils.Unassigned object>, kernel_gateway_image_config=<sagemaker_core.main.utils.Unassigned object>, jupyter_lab_app_image_config=<sagemaker_core.main.utils.Unassigned object>, code_editor_app_image_config=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Create a AppImageConfig resource
- Parameters:
app_image_config_name (str) – The name of the AppImageConfig. Must be unique to your account.
tags (List[Tag] | None) – A list of tags to apply to the AppImageConfig.
kernel_gateway_image_config (KernelGatewayImageConfig | None) – The KernelGatewayImageConfig. You can only specify one image kernel in the AppImageConfig API. This kernel will be shown to users before the image starts. Once the image runs, all kernels are visible in JupyterLab.
jupyter_lab_app_image_config (JupyterLabAppImageConfig | None) – The JupyterLabAppImageConfig. You can only specify one image kernel in the AppImageConfig API. This kernel is shown to users before the image starts. After the image runs, all kernels are visible in JupyterLab.
code_editor_app_image_config (CodeEditorAppImageConfig | None) – The CodeEditorAppImageConfig. You can only specify one image kernel in the AppImageConfig API. This kernel is shown to users before the image starts. After the image runs, all kernels are visible in Code Editor.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
The AppImageConfig resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceInUse – Resource being accessed is in use.
ConfigSchemaValidationError – Raised when a configuration file does not adhere to the schema
LocalConfigNotFoundError – Raised when a configuration file is not found in local file system
S3ConfigNotFoundError – Raised when a configuration file is not found in S3
- Return type:
AppImageConfig | None
- delete()[source]
Delete a AppImageConfig resource
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
None
- classmethod get(app_image_config_name, session=None, region=None)[source]
Get a AppImageConfig resource
- Parameters:
- Returns:
The AppImageConfig resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
AppImageConfig | None
- classmethod get_all(name_contains=<sagemaker_core.main.utils.Unassigned object>, creation_time_before=<sagemaker_core.main.utils.Unassigned object>, creation_time_after=<sagemaker_core.main.utils.Unassigned object>, modified_time_before=<sagemaker_core.main.utils.Unassigned object>, modified_time_after=<sagemaker_core.main.utils.Unassigned object>, sort_by=<sagemaker_core.main.utils.Unassigned object>, sort_order=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Get all AppImageConfig resources
- Parameters:
max_results – The total number of items to return in the response. If the total number of items available is more than the value specified, a NextToken is provided in the response. To resume pagination, provide the NextToken value in the as part of a subsequent call. The default value is 10.
next_token – If the previous call to ListImages didn’t return the full set of AppImageConfigs, the call returns a token for getting the next set of AppImageConfigs.
name_contains (str | None) – A filter that returns only AppImageConfigs whose name contains the specified string.
creation_time_before (datetime | None) – A filter that returns only AppImageConfigs created on or before the specified time.
creation_time_after (datetime | None) – A filter that returns only AppImageConfigs created on or after the specified time.
modified_time_before (datetime | None) – A filter that returns only AppImageConfigs modified on or before the specified time.
modified_time_after (datetime | None) – A filter that returns only AppImageConfigs modified on or after the specified time.
sort_by (str | None) – The property used to sort results. The default value is CreationTime.
sort_order (str | None) – The sort order. The default value is Descending.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
Iterator for listed AppImageConfig resources.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
ResourceIterator[AppImageConfig]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'protected_namespaces': (), 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- refresh()[source]
Refresh a AppImageConfig resource
- Returns:
The AppImageConfig resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
AppImageConfig | None
- update(kernel_gateway_image_config=<sagemaker_core.main.utils.Unassigned object>, jupyter_lab_app_image_config=<sagemaker_core.main.utils.Unassigned object>, code_editor_app_image_config=<sagemaker_core.main.utils.Unassigned object>)[source]
Update a AppImageConfig resource
- Returns:
The AppImageConfig resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Parameters:
kernel_gateway_image_config (KernelGatewayImageConfig | None)
jupyter_lab_app_image_config (JupyterLabAppImageConfig | None)
code_editor_app_image_config (CodeEditorAppImageConfig | None)
- Return type:
AppImageConfig | None
- class sagemaker_core.main.resources.Artifact(*, artifact_arn, artifact_name=<sagemaker_core.main.utils.Unassigned object>, source=<sagemaker_core.main.utils.Unassigned object>, artifact_type=<sagemaker_core.main.utils.Unassigned object>, properties=<sagemaker_core.main.utils.Unassigned object>, creation_time=<sagemaker_core.main.utils.Unassigned object>, created_by=<sagemaker_core.main.utils.Unassigned object>, last_modified_time=<sagemaker_core.main.utils.Unassigned object>, last_modified_by=<sagemaker_core.main.utils.Unassigned object>, metadata_properties=<sagemaker_core.main.utils.Unassigned object>, lineage_group_arn=<sagemaker_core.main.utils.Unassigned object>)[source]
Class representing resource Artifact
- Parameters:
artifact_arn (str)
artifact_name (str | None)
source (ArtifactSource | None)
artifact_type (str | None)
creation_time (datetime | None)
created_by (UserContext | None)
last_modified_time (datetime | None)
last_modified_by (UserContext | None)
metadata_properties (MetadataProperties | None)
lineage_group_arn (str | None)
- artifact_name
The name of the artifact.
- Type:
str | None
- artifact_arn
The Amazon Resource Name (ARN) of the artifact.
- Type:
- source
The source of the artifact.
- Type:
sagemaker_core.main.shapes.ArtifactSource | None
- artifact_type
The type of the artifact.
- Type:
str | None
- creation_time
When the artifact was created.
- Type:
datetime.datetime | None
- created_by
- Type:
sagemaker_core.main.shapes.UserContext | None
- last_modified_time
When the artifact was last modified.
- Type:
datetime.datetime | None
- last_modified_by
- Type:
sagemaker_core.main.shapes.UserContext | None
- metadata_properties
- Type:
sagemaker_core.main.shapes.MetadataProperties | None
- lineage_group_arn
The Amazon Resource Name (ARN) of the lineage group.
- Type:
str | None
- classmethod create(source, artifact_type, artifact_name=<sagemaker_core.main.utils.Unassigned object>, properties=<sagemaker_core.main.utils.Unassigned object>, metadata_properties=<sagemaker_core.main.utils.Unassigned object>, tags=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Create a Artifact resource
- Parameters:
source (ArtifactSource) – The ID, ID type, and URI of the source.
artifact_type (str) – The artifact type.
artifact_name (str | None) – The name of the artifact. Must be unique to your account in an Amazon Web Services Region.
properties (Dict[str, str] | None) – A list of properties to add to the artifact.
metadata_properties (MetadataProperties | None)
tags (List[Tag] | None) – A list of tags to apply to the artifact.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
The Artifact resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
ConfigSchemaValidationError – Raised when a configuration file does not adhere to the schema
LocalConfigNotFoundError – Raised when a configuration file is not found in local file system
S3ConfigNotFoundError – Raised when a configuration file is not found in S3
- Return type:
Artifact | None
- delete()[source]
Delete a Artifact resource
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
None
- classmethod get(artifact_arn, session=None, region=None)[source]
Get a Artifact resource
- Parameters:
- Returns:
The Artifact resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
Artifact | None
- classmethod get_all(source_uri=<sagemaker_core.main.utils.Unassigned object>, artifact_type=<sagemaker_core.main.utils.Unassigned object>, created_after=<sagemaker_core.main.utils.Unassigned object>, created_before=<sagemaker_core.main.utils.Unassigned object>, sort_by=<sagemaker_core.main.utils.Unassigned object>, sort_order=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Get all Artifact resources
- Parameters:
source_uri (str | None) – A filter that returns only artifacts with the specified source URI.
artifact_type (str | None) – A filter that returns only artifacts of the specified type.
created_after (datetime | None) – A filter that returns only artifacts created on or after the specified time.
created_before (datetime | None) – A filter that returns only artifacts created on or before the specified time.
sort_by (str | None) – The property used to sort results. The default value is CreationTime.
sort_order (str | None) – The sort order. The default value is Descending.
next_token – If the previous call to ListArtifacts didn’t return the full set of artifacts, the call returns a token for getting the next set of artifacts.
max_results – The maximum number of artifacts to return in the response. The default value is 10.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
Iterator for listed Artifact resources.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
ResourceIterator[Artifact]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'protected_namespaces': (), 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- refresh()[source]
Refresh a Artifact resource
- Returns:
The Artifact resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
Artifact | None
- update(artifact_name=<sagemaker_core.main.utils.Unassigned object>, properties=<sagemaker_core.main.utils.Unassigned object>, properties_to_remove=<sagemaker_core.main.utils.Unassigned object>)[source]
Update a Artifact resource
- Parameters:
- Returns:
The Artifact resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ConflictException – There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.
ResourceNotFound – Resource being access is not found.
- Return type:
Artifact | None
- class sagemaker_core.main.resources.Association(*, source_arn=<sagemaker_core.main.utils.Unassigned object>, destination_arn=<sagemaker_core.main.utils.Unassigned object>, source_type=<sagemaker_core.main.utils.Unassigned object>, destination_type=<sagemaker_core.main.utils.Unassigned object>, association_type=<sagemaker_core.main.utils.Unassigned object>, source_name=<sagemaker_core.main.utils.Unassigned object>, destination_name=<sagemaker_core.main.utils.Unassigned object>, creation_time=<sagemaker_core.main.utils.Unassigned object>, created_by=<sagemaker_core.main.utils.Unassigned object>)[source]
Class representing resource Association
- Parameters:
- source_arn
The ARN of the source.
- Type:
str | None
- destination_arn
The Amazon Resource Name (ARN) of the destination.
- Type:
str | None
- source_type
The source type.
- Type:
str | None
- destination_type
The destination type.
- Type:
str | None
- association_type
The type of the association.
- Type:
str | None
- source_name
The name of the source.
- Type:
str | None
- destination_name
The name of the destination.
- Type:
str | None
- creation_time
When the association was created.
- Type:
datetime.datetime | None
- created_by
- Type:
sagemaker_core.main.shapes.UserContext | None
- classmethod add(source_arn, destination_arn, association_type=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Creates an association between the source and the destination.
- Parameters:
source_arn (str) – The ARN of the source.
destination_arn (str) – The Amazon Resource Name (ARN) of the destination.
association_type (str | None) – The type of association. The following are suggested uses for each type. Amazon SageMaker places no restrictions on their use. ContributedTo - The source contributed to the destination or had a part in enabling the destination. For example, the training data contributed to the training job. AssociatedWith - The source is connected to the destination. For example, an approval workflow is associated with a model deployment. DerivedFrom - The destination is a modification of the source. For example, a digest output of a channel input for a processing job is derived from the original inputs. Produced - The source generated the destination. For example, a training job produced a model artifact.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
ResourceNotFound – Resource being access is not found.
- Return type:
None
- delete()[source]
Delete a Association resource
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
None
- classmethod get_all(source_arn=<sagemaker_core.main.utils.Unassigned object>, destination_arn=<sagemaker_core.main.utils.Unassigned object>, source_type=<sagemaker_core.main.utils.Unassigned object>, destination_type=<sagemaker_core.main.utils.Unassigned object>, association_type=<sagemaker_core.main.utils.Unassigned object>, created_after=<sagemaker_core.main.utils.Unassigned object>, created_before=<sagemaker_core.main.utils.Unassigned object>, sort_by=<sagemaker_core.main.utils.Unassigned object>, sort_order=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Get all Association resources
- Parameters:
source_arn (str | None) – A filter that returns only associations with the specified source ARN.
destination_arn (str | None) – A filter that returns only associations with the specified destination Amazon Resource Name (ARN).
source_type (str | None) – A filter that returns only associations with the specified source type.
destination_type (str | None) – A filter that returns only associations with the specified destination type.
association_type (str | None) – A filter that returns only associations of the specified type.
created_after (datetime | None) – A filter that returns only associations created on or after the specified time.
created_before (datetime | None) – A filter that returns only associations created on or before the specified time.
sort_by (str | None) – The property used to sort results. The default value is CreationTime.
sort_order (str | None) – The sort order. The default value is Descending.
next_token – If the previous call to ListAssociations didn’t return the full set of associations, the call returns a token for getting the next set of associations.
max_results – The maximum number of associations to return in the response. The default value is 10.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
Iterator for listed Association resources.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
ResourceIterator[Association]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'protected_namespaces': (), 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class sagemaker_core.main.resources.AutoMLJob(*, auto_ml_job_name, auto_ml_job_arn=<sagemaker_core.main.utils.Unassigned object>, input_data_config=<sagemaker_core.main.utils.Unassigned object>, output_data_config=<sagemaker_core.main.utils.Unassigned object>, role_arn=<sagemaker_core.main.utils.Unassigned object>, auto_ml_job_objective=<sagemaker_core.main.utils.Unassigned object>, problem_type=<sagemaker_core.main.utils.Unassigned object>, auto_ml_job_config=<sagemaker_core.main.utils.Unassigned object>, creation_time=<sagemaker_core.main.utils.Unassigned object>, end_time=<sagemaker_core.main.utils.Unassigned object>, last_modified_time=<sagemaker_core.main.utils.Unassigned object>, failure_reason=<sagemaker_core.main.utils.Unassigned object>, partial_failure_reasons=<sagemaker_core.main.utils.Unassigned object>, best_candidate=<sagemaker_core.main.utils.Unassigned object>, auto_ml_job_status=<sagemaker_core.main.utils.Unassigned object>, auto_ml_job_secondary_status=<sagemaker_core.main.utils.Unassigned object>, generate_candidate_definitions_only=<sagemaker_core.main.utils.Unassigned object>, auto_ml_job_artifacts=<sagemaker_core.main.utils.Unassigned object>, resolved_attributes=<sagemaker_core.main.utils.Unassigned object>, model_deploy_config=<sagemaker_core.main.utils.Unassigned object>, model_deploy_result=<sagemaker_core.main.utils.Unassigned object>)[source]
Class representing resource AutoMLJob
- Parameters:
auto_ml_job_name (str)
auto_ml_job_arn (str | None)
input_data_config (List[AutoMLChannel] | None)
output_data_config (AutoMLOutputDataConfig | None)
role_arn (str | None)
auto_ml_job_objective (AutoMLJobObjective | None)
problem_type (str | None)
auto_ml_job_config (AutoMLJobConfig | None)
creation_time (datetime | None)
end_time (datetime | None)
last_modified_time (datetime | None)
failure_reason (str | None)
partial_failure_reasons (List[AutoMLPartialFailureReason] | None)
best_candidate (AutoMLCandidate | None)
auto_ml_job_status (str | None)
auto_ml_job_secondary_status (str | None)
generate_candidate_definitions_only (bool | None)
auto_ml_job_artifacts (AutoMLJobArtifacts | None)
resolved_attributes (ResolvedAttributes | None)
model_deploy_config (ModelDeployConfig | None)
model_deploy_result (ModelDeployResult | None)
- auto_ml_job_name
Returns the name of the AutoML job.
- Type:
- auto_ml_job_arn
Returns the ARN of the AutoML job.
- Type:
str | None
- input_data_config
Returns the input data configuration for the AutoML job.
- Type:
List[sagemaker_core.main.shapes.AutoMLChannel] | None
- output_data_config
Returns the job’s output data config.
- Type:
sagemaker_core.main.shapes.AutoMLOutputDataConfig | None
- role_arn
The ARN of the IAM role that has read permission to the input data location and write permission to the output data location in Amazon S3.
- Type:
str | None
- creation_time
Returns the creation time of the AutoML job.
- Type:
datetime.datetime | None
- last_modified_time
Returns the job’s last modified time.
- Type:
datetime.datetime | None
- auto_ml_job_status
Returns the status of the AutoML job.
- Type:
str | None
- auto_ml_job_secondary_status
Returns the secondary status of the AutoML job.
- Type:
str | None
- auto_ml_job_objective
Returns the job’s objective.
- Type:
sagemaker_core.main.shapes.AutoMLJobObjective | None
- problem_type
Returns the job’s problem type.
- Type:
str | None
- auto_ml_job_config
Returns the configuration for the AutoML job.
- Type:
sagemaker_core.main.shapes.AutoMLJobConfig | None
- end_time
Returns the end time of the AutoML job.
- Type:
datetime.datetime | None
- failure_reason
Returns the failure reason for an AutoML job, when applicable.
- Type:
str | None
- partial_failure_reasons
Returns a list of reasons for partial failures within an AutoML job.
- Type:
List[sagemaker_core.main.shapes.AutoMLPartialFailureReason] | None
- best_candidate
The best model candidate selected by SageMaker Autopilot using both the best objective metric and lowest InferenceLatency for an experiment.
- Type:
sagemaker_core.main.shapes.AutoMLCandidate | None
- generate_candidate_definitions_only
Indicates whether the output for an AutoML job generates candidate definitions only.
- Type:
bool | None
- auto_ml_job_artifacts
Returns information on the job’s artifacts found in AutoMLJobArtifacts.
- Type:
sagemaker_core.main.shapes.AutoMLJobArtifacts | None
- resolved_attributes
Contains ProblemType, AutoMLJobObjective, and CompletionCriteria. If you do not provide these values, they are inferred.
- Type:
sagemaker_core.main.shapes.ResolvedAttributes | None
- model_deploy_config
Indicates whether the model was deployed automatically to an endpoint and the name of that endpoint if deployed automatically.
- Type:
sagemaker_core.main.shapes.ModelDeployConfig | None
- model_deploy_result
Provides information about endpoint for the model deployment.
- Type:
sagemaker_core.main.shapes.ModelDeployResult | None
- classmethod create(auto_ml_job_name, input_data_config, output_data_config, role_arn, problem_type=<sagemaker_core.main.utils.Unassigned object>, auto_ml_job_objective=<sagemaker_core.main.utils.Unassigned object>, auto_ml_job_config=<sagemaker_core.main.utils.Unassigned object>, generate_candidate_definitions_only=<sagemaker_core.main.utils.Unassigned object>, tags=<sagemaker_core.main.utils.Unassigned object>, model_deploy_config=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Create a AutoMLJob resource
- Parameters:
auto_ml_job_name (str) – Identifies an Autopilot job. The name must be unique to your account and is case insensitive.
input_data_config (List[AutoMLChannel]) – An array of channel objects that describes the input data and its location. Each channel is a named input source. Similar to InputDataConfig supported by HyperParameterTrainingJobDefinition. Format(s) supported: CSV, Parquet. A minimum of 500 rows is required for the training dataset. There is not a minimum number of rows required for the validation dataset.
output_data_config (AutoMLOutputDataConfig) – Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job. Format(s) supported: CSV.
role_arn (str) – The ARN of the role that is used to access the data.
problem_type (str | None) – Defines the type of supervised learning problem available for the candidates. For more information, see SageMaker Autopilot problem types.
auto_ml_job_objective (AutoMLJobObjective | None) – Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. See AutoMLJobObjective for the default values.
auto_ml_job_config (AutoMLJobConfig | None) – A collection of settings used to configure an AutoML job.
generate_candidate_definitions_only (bool | None) – Generates possible candidates without training the models. A candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
tags (List[Tag] | None) – An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
model_deploy_config (ModelDeployConfig | None) – Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
The AutoMLJob resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceInUse – Resource being accessed is in use.
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
ConfigSchemaValidationError – Raised when a configuration file does not adhere to the schema
LocalConfigNotFoundError – Raised when a configuration file is not found in local file system
S3ConfigNotFoundError – Raised when a configuration file is not found in S3
- Return type:
AutoMLJob | None
- classmethod get(auto_ml_job_name, session=None, region=None)[source]
Get a AutoMLJob resource
- Parameters:
- Returns:
The AutoMLJob resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
AutoMLJob | None
- classmethod get_all(creation_time_after=<sagemaker_core.main.utils.Unassigned object>, creation_time_before=<sagemaker_core.main.utils.Unassigned object>, last_modified_time_after=<sagemaker_core.main.utils.Unassigned object>, last_modified_time_before=<sagemaker_core.main.utils.Unassigned object>, name_contains=<sagemaker_core.main.utils.Unassigned object>, status_equals=<sagemaker_core.main.utils.Unassigned object>, sort_order=<sagemaker_core.main.utils.Unassigned object>, sort_by=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Get all AutoMLJob resources
- Parameters:
creation_time_after (datetime | None) – Request a list of jobs, using a filter for time.
creation_time_before (datetime | None) – Request a list of jobs, using a filter for time.
last_modified_time_after (datetime | None) – Request a list of jobs, using a filter for time.
last_modified_time_before (datetime | None) – Request a list of jobs, using a filter for time.
name_contains (str | None) – Request a list of jobs, using a search filter for name.
status_equals (str | None) – Request a list of jobs, using a filter for status.
sort_order (str | None) – The sort order for the results. The default is Descending.
sort_by (str | None) – The parameter by which to sort the results. The default is Name.
max_results – Request a list of jobs up to a specified limit.
next_token – If the previous response was truncated, you receive this token. Use it in your next request to receive the next set of results.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
Iterator for listed AutoMLJob resources.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
ResourceIterator[AutoMLJob]
- get_all_candidates(status_equals=<sagemaker_core.main.utils.Unassigned object>, candidate_name_equals=<sagemaker_core.main.utils.Unassigned object>, sort_order=<sagemaker_core.main.utils.Unassigned object>, sort_by=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
List the candidates created for the job.
- Parameters:
status_equals (str | None) – List the candidates for the job and filter by status.
candidate_name_equals (str | None) – List the candidates for the job and filter by candidate name.
sort_order (str | None) – The sort order for the results. The default is Ascending.
sort_by (str | None) – The parameter by which to sort the results. The default is Descending.
max_results – List the job’s candidates up to a specified limit.
next_token – If the previous response was truncated, you receive this token. Use it in your next request to receive the next set of results.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
Iterator for listed AutoMLCandidate.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
ResourceIterator[AutoMLCandidate]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'protected_namespaces': (), 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- refresh()[source]
Refresh a AutoMLJob resource
- Returns:
The AutoMLJob resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
AutoMLJob | None
- stop()[source]
Stop a AutoMLJob resource
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
None
- wait(poll=5, timeout=None)[source]
Wait for a AutoMLJob resource.
- Parameters:
- Raises:
TimeoutExceededError – If the resource does not reach a terminal state before the timeout.
FailedStatusError – If the resource reaches a failed state.
WaiterError – Raised when an error occurs while waiting.
- Return type:
None
- class sagemaker_core.main.resources.AutoMLJobV2(*, auto_ml_job_name, auto_ml_job_arn=<sagemaker_core.main.utils.Unassigned object>, auto_ml_job_input_data_config=<sagemaker_core.main.utils.Unassigned object>, output_data_config=<sagemaker_core.main.utils.Unassigned object>, role_arn=<sagemaker_core.main.utils.Unassigned object>, auto_ml_job_objective=<sagemaker_core.main.utils.Unassigned object>, auto_ml_problem_type_config=<sagemaker_core.main.utils.Unassigned object>, auto_ml_problem_type_config_name=<sagemaker_core.main.utils.Unassigned object>, creation_time=<sagemaker_core.main.utils.Unassigned object>, end_time=<sagemaker_core.main.utils.Unassigned object>, last_modified_time=<sagemaker_core.main.utils.Unassigned object>, failure_reason=<sagemaker_core.main.utils.Unassigned object>, partial_failure_reasons=<sagemaker_core.main.utils.Unassigned object>, best_candidate=<sagemaker_core.main.utils.Unassigned object>, auto_ml_job_status=<sagemaker_core.main.utils.Unassigned object>, auto_ml_job_secondary_status=<sagemaker_core.main.utils.Unassigned object>, auto_ml_job_artifacts=<sagemaker_core.main.utils.Unassigned object>, resolved_attributes=<sagemaker_core.main.utils.Unassigned object>, model_deploy_config=<sagemaker_core.main.utils.Unassigned object>, model_deploy_result=<sagemaker_core.main.utils.Unassigned object>, data_split_config=<sagemaker_core.main.utils.Unassigned object>, security_config=<sagemaker_core.main.utils.Unassigned object>, auto_ml_compute_config=<sagemaker_core.main.utils.Unassigned object>)[source]
Class representing resource AutoMLJobV2
- Parameters:
auto_ml_job_name (str)
auto_ml_job_arn (str | None)
auto_ml_job_input_data_config (List[AutoMLJobChannel] | None)
output_data_config (AutoMLOutputDataConfig | None)
role_arn (str | None)
auto_ml_job_objective (AutoMLJobObjective | None)
auto_ml_problem_type_config (AutoMLProblemTypeConfig | None)
auto_ml_problem_type_config_name (str | None)
creation_time (datetime | None)
end_time (datetime | None)
last_modified_time (datetime | None)
failure_reason (str | None)
partial_failure_reasons (List[AutoMLPartialFailureReason] | None)
best_candidate (AutoMLCandidate | None)
auto_ml_job_status (str | None)
auto_ml_job_secondary_status (str | None)
auto_ml_job_artifacts (AutoMLJobArtifacts | None)
resolved_attributes (AutoMLResolvedAttributes | None)
model_deploy_config (ModelDeployConfig | None)
model_deploy_result (ModelDeployResult | None)
data_split_config (AutoMLDataSplitConfig | None)
security_config (AutoMLSecurityConfig | None)
auto_ml_compute_config (AutoMLComputeConfig | None)
- auto_ml_job_name
Returns the name of the AutoML job V2.
- Type:
- auto_ml_job_arn
Returns the Amazon Resource Name (ARN) of the AutoML job V2.
- Type:
str | None
- auto_ml_job_input_data_config
Returns an array of channel objects describing the input data and their location.
- Type:
List[sagemaker_core.main.shapes.AutoMLJobChannel] | None
- output_data_config
Returns the job’s output data config.
- Type:
sagemaker_core.main.shapes.AutoMLOutputDataConfig | None
- role_arn
The ARN of the IAM role that has read permission to the input data location and write permission to the output data location in Amazon S3.
- Type:
str | None
- creation_time
Returns the creation time of the AutoML job V2.
- Type:
datetime.datetime | None
- last_modified_time
Returns the job’s last modified time.
- Type:
datetime.datetime | None
- auto_ml_job_status
Returns the status of the AutoML job V2.
- Type:
str | None
- auto_ml_job_secondary_status
Returns the secondary status of the AutoML job V2.
- Type:
str | None
- auto_ml_job_objective
Returns the job’s objective.
- Type:
sagemaker_core.main.shapes.AutoMLJobObjective | None
- auto_ml_problem_type_config
Returns the configuration settings of the problem type set for the AutoML job V2.
- Type:
sagemaker_core.main.shapes.AutoMLProblemTypeConfig | None
- auto_ml_problem_type_config_name
Returns the name of the problem type configuration set for the AutoML job V2.
- Type:
str | None
- end_time
Returns the end time of the AutoML job V2.
- Type:
datetime.datetime | None
- failure_reason
Returns the reason for the failure of the AutoML job V2, when applicable.
- Type:
str | None
- partial_failure_reasons
Returns a list of reasons for partial failures within an AutoML job V2.
- Type:
List[sagemaker_core.main.shapes.AutoMLPartialFailureReason] | None
- best_candidate
Information about the candidate produced by an AutoML training job V2, including its status, steps, and other properties.
- Type:
sagemaker_core.main.shapes.AutoMLCandidate | None
- auto_ml_job_artifacts
- Type:
sagemaker_core.main.shapes.AutoMLJobArtifacts | None
- resolved_attributes
Returns the resolved attributes used by the AutoML job V2.
- Type:
sagemaker_core.main.shapes.AutoMLResolvedAttributes | None
- model_deploy_config
Indicates whether the model was deployed automatically to an endpoint and the name of that endpoint if deployed automatically.
- Type:
sagemaker_core.main.shapes.ModelDeployConfig | None
- model_deploy_result
Provides information about endpoint for the model deployment.
- Type:
sagemaker_core.main.shapes.ModelDeployResult | None
- data_split_config
Returns the configuration settings of how the data are split into train and validation datasets.
- Type:
sagemaker_core.main.shapes.AutoMLDataSplitConfig | None
- security_config
Returns the security configuration for traffic encryption or Amazon VPC settings.
- Type:
sagemaker_core.main.shapes.AutoMLSecurityConfig | None
- auto_ml_compute_config
The compute configuration used for the AutoML job V2.
- Type:
sagemaker_core.main.shapes.AutoMLComputeConfig | None
- classmethod create(auto_ml_job_name, auto_ml_job_input_data_config, output_data_config, auto_ml_problem_type_config, role_arn, tags=<sagemaker_core.main.utils.Unassigned object>, security_config=<sagemaker_core.main.utils.Unassigned object>, auto_ml_job_objective=<sagemaker_core.main.utils.Unassigned object>, model_deploy_config=<sagemaker_core.main.utils.Unassigned object>, data_split_config=<sagemaker_core.main.utils.Unassigned object>, auto_ml_compute_config=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Create a AutoMLJobV2 resource
- Parameters:
auto_ml_job_name (str) – Identifies an Autopilot job. The name must be unique to your account and is case insensitive.
auto_ml_job_input_data_config (List[AutoMLJobChannel]) – An array of channel objects describing the input data and their location. Each channel is a named input source. Similar to the InputDataConfig attribute in the CreateAutoMLJob input parameters. The supported formats depend on the problem type: For tabular problem types: S3Prefix, ManifestFile. For image classification: S3Prefix, ManifestFile, AugmentedManifestFile. For text classification: S3Prefix. For time-series forecasting: S3Prefix. For text generation (LLMs fine-tuning): S3Prefix.
output_data_config (AutoMLOutputDataConfig) – Provides information about encryption and the Amazon S3 output path needed to store artifacts from an AutoML job.
auto_ml_problem_type_config (AutoMLProblemTypeConfig) – Defines the configuration settings of one of the supported problem types.
role_arn (str) – The ARN of the role that is used to access the data.
tags (List[Tag] | None) – An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, such as by purpose, owner, or environment. For more information, see Tagging Amazon Web ServicesResources. Tag keys must be unique per resource.
security_config (AutoMLSecurityConfig | None) – The security configuration for traffic encryption or Amazon VPC settings.
auto_ml_job_objective (AutoMLJobObjective | None) – Specifies a metric to minimize or maximize as the objective of a job. If not specified, the default objective metric depends on the problem type. For the list of default values per problem type, see AutoMLJobObjective. For tabular problem types: You must either provide both the AutoMLJobObjective and indicate the type of supervised learning problem in AutoMLProblemTypeConfig (TabularJobConfig.ProblemType), or none at all. For text generation problem types (LLMs fine-tuning): Fine-tuning language models in Autopilot does not require setting the AutoMLJobObjective field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see Metrics for fine-tuning LLMs in Autopilot.
model_deploy_config (ModelDeployConfig | None) – Specifies how to generate the endpoint name for an automatic one-click Autopilot model deployment.
data_split_config (AutoMLDataSplitConfig | None) – This structure specifies how to split the data into train and validation datasets. The validation and training datasets must contain the same headers. For jobs created by calling CreateAutoMLJob, the validation dataset must be less than 2 GB in size. This attribute must not be set for the time-series forecasting problem type, as Autopilot automatically splits the input dataset into training and validation sets.
auto_ml_compute_config (AutoMLComputeConfig | None) – Specifies the compute configuration for the AutoML job V2.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
The AutoMLJobV2 resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceInUse – Resource being accessed is in use.
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
ConfigSchemaValidationError – Raised when a configuration file does not adhere to the schema
LocalConfigNotFoundError – Raised when a configuration file is not found in local file system
S3ConfigNotFoundError – Raised when a configuration file is not found in S3
- Return type:
AutoMLJobV2 | None
- classmethod get(auto_ml_job_name, session=None, region=None)[source]
Get a AutoMLJobV2 resource
- Parameters:
- Returns:
The AutoMLJobV2 resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
AutoMLJobV2 | None
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'protected_namespaces': (), 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- refresh()[source]
Refresh a AutoMLJobV2 resource
- Returns:
The AutoMLJobV2 resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
AutoMLJobV2 | None
- wait(poll=5, timeout=None)[source]
Wait for a AutoMLJobV2 resource.
- Parameters:
- Raises:
TimeoutExceededError – If the resource does not reach a terminal state before the timeout.
FailedStatusError – If the resource reaches a failed state.
WaiterError – Raised when an error occurs while waiting.
- Return type:
None
- class sagemaker_core.main.resources.Base[source]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'protected_namespaces': (), 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class sagemaker_core.main.resources.Cluster(*, cluster_name, cluster_arn=<sagemaker_core.main.utils.Unassigned object>, cluster_status=<sagemaker_core.main.utils.Unassigned object>, creation_time=<sagemaker_core.main.utils.Unassigned object>, failure_message=<sagemaker_core.main.utils.Unassigned object>, instance_groups=<sagemaker_core.main.utils.Unassigned object>, vpc_config=<sagemaker_core.main.utils.Unassigned object>, orchestrator=<sagemaker_core.main.utils.Unassigned object>, node_recovery=<sagemaker_core.main.utils.Unassigned object>)[source]
Class representing resource Cluster
- Parameters:
- cluster_arn
The Amazon Resource Name (ARN) of the SageMaker HyperPod cluster.
- Type:
str | None
- cluster_status
The status of the SageMaker HyperPod cluster.
- Type:
str | None
- instance_groups
The instance groups of the SageMaker HyperPod cluster.
- Type:
List[sagemaker_core.main.shapes.ClusterInstanceGroupDetails] | None
- cluster_name
The name of the SageMaker HyperPod cluster.
- Type:
- creation_time
The time when the SageMaker Cluster is created.
- Type:
datetime.datetime | None
- failure_message
The failure message of the SageMaker HyperPod cluster.
- Type:
str | None
- vpc_config
- Type:
sagemaker_core.main.shapes.VpcConfig | None
- orchestrator
The type of orchestrator used for the SageMaker HyperPod cluster.
- Type:
sagemaker_core.main.shapes.ClusterOrchestrator | None
- node_recovery
The node recovery mode configured for the SageMaker HyperPod cluster.
- Type:
str | None
- batch_delete_nodes(node_ids, session=None, region=None)[source]
Deletes specific nodes within a SageMaker HyperPod cluster.
- Parameters:
node_ids (List[str]) – A list of node IDs to be deleted from the specified cluster. For SageMaker HyperPod clusters using the Slurm workload manager, you cannot remove instances that are configured as Slurm controller nodes.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
BatchDeleteClusterNodesResponse
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
BatchDeleteClusterNodesResponse | None
- classmethod create(cluster_name, instance_groups, vpc_config=<sagemaker_core.main.utils.Unassigned object>, tags=<sagemaker_core.main.utils.Unassigned object>, orchestrator=<sagemaker_core.main.utils.Unassigned object>, node_recovery=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Create a Cluster resource
- Parameters:
cluster_name (str) – The name for the new SageMaker HyperPod cluster.
instance_groups (List[ClusterInstanceGroupSpecification]) – The instance groups to be created in the SageMaker HyperPod cluster.
vpc_config (VpcConfig | None)
tags (List[Tag] | None) – Custom tags for managing the SageMaker HyperPod cluster as an Amazon Web Services resource. You can add tags to your cluster in the same way you add them in other Amazon Web Services services that support tagging. To learn more about tagging Amazon Web Services resources in general, see Tagging Amazon Web Services Resources User Guide.
orchestrator (ClusterOrchestrator | None) – The type of orchestrator to use for the SageMaker HyperPod cluster. Currently, the only supported value is “eks”, which is to use an Amazon Elastic Kubernetes Service (EKS) cluster as the orchestrator.
node_recovery (str | None) – The node recovery mode for the SageMaker HyperPod cluster. When set to Automatic, SageMaker HyperPod will automatically reboot or replace faulty nodes when issues are detected. When set to None, cluster administrators will need to manually manage any faulty cluster instances.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
The Cluster resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceInUse – Resource being accessed is in use.
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
ConfigSchemaValidationError – Raised when a configuration file does not adhere to the schema
LocalConfigNotFoundError – Raised when a configuration file is not found in local file system
S3ConfigNotFoundError – Raised when a configuration file is not found in S3
- Return type:
Cluster | None
- delete()[source]
Delete a Cluster resource
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ConflictException – There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.
ResourceNotFound – Resource being access is not found.
- Return type:
None
- classmethod get(cluster_name, session=None, region=None)[source]
Get a Cluster resource
- Parameters:
- Returns:
The Cluster resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
Cluster | None
- classmethod get_all(creation_time_after=<sagemaker_core.main.utils.Unassigned object>, creation_time_before=<sagemaker_core.main.utils.Unassigned object>, name_contains=<sagemaker_core.main.utils.Unassigned object>, sort_by=<sagemaker_core.main.utils.Unassigned object>, sort_order=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Get all Cluster resources
- Parameters:
creation_time_after (datetime | None) – Set a start time for the time range during which you want to list SageMaker HyperPod clusters. Timestamps are formatted according to the ISO 8601 standard. Acceptable formats include: YYYY-MM-DDThh:mm:ss.sssTZD (UTC), for example, 2014-10-01T20:30:00.000Z YYYY-MM-DDThh:mm:ss.sssTZD (with offset), for example, 2014-10-01T12:30:00.000-08:00 YYYY-MM-DD, for example, 2014-10-01 Unix time in seconds, for example, 1412195400. This is also referred to as Unix Epoch time and represents the number of seconds since midnight, January 1, 1970 UTC. For more information about the timestamp format, see Timestamp in the Amazon Web Services Command Line Interface User Guide.
creation_time_before (datetime | None) – Set an end time for the time range during which you want to list SageMaker HyperPod clusters. A filter that returns nodes in a SageMaker HyperPod cluster created before the specified time. The acceptable formats are the same as the timestamp formats for CreationTimeAfter. For more information about the timestamp format, see Timestamp in the Amazon Web Services Command Line Interface User Guide.
max_results – Set the maximum number of SageMaker HyperPod clusters to list.
name_contains (str | None) – Set the maximum number of instances to print in the list.
next_token – Set the next token to retrieve the list of SageMaker HyperPod clusters.
sort_by (str | None) – The field by which to sort results. The default value is CREATION_TIME.
sort_order (str | None) – The sort order for results. The default value is Ascending.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
Iterator for listed Cluster resources.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
ResourceIterator[Cluster]
- get_all_nodes(creation_time_after=<sagemaker_core.main.utils.Unassigned object>, creation_time_before=<sagemaker_core.main.utils.Unassigned object>, instance_group_name_contains=<sagemaker_core.main.utils.Unassigned object>, sort_by=<sagemaker_core.main.utils.Unassigned object>, sort_order=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Retrieves the list of instances (also called nodes interchangeably) in a SageMaker HyperPod cluster.
- Parameters:
creation_time_after (datetime | None) – A filter that returns nodes in a SageMaker HyperPod cluster created after the specified time. Timestamps are formatted according to the ISO 8601 standard. Acceptable formats include: YYYY-MM-DDThh:mm:ss.sssTZD (UTC), for example, 2014-10-01T20:30:00.000Z YYYY-MM-DDThh:mm:ss.sssTZD (with offset), for example, 2014-10-01T12:30:00.000-08:00 YYYY-MM-DD, for example, 2014-10-01 Unix time in seconds, for example, 1412195400. This is also referred to as Unix Epoch time and represents the number of seconds since midnight, January 1, 1970 UTC. For more information about the timestamp format, see Timestamp in the Amazon Web Services Command Line Interface User Guide.
creation_time_before (datetime | None) – A filter that returns nodes in a SageMaker HyperPod cluster created before the specified time. The acceptable formats are the same as the timestamp formats for CreationTimeAfter. For more information about the timestamp format, see Timestamp in the Amazon Web Services Command Line Interface User Guide.
instance_group_name_contains (str | None) – A filter that returns the instance groups whose name contain a specified string.
max_results – The maximum number of nodes to return in the response.
next_token – If the result of the previous ListClusterNodes request was truncated, the response includes a NextToken. To retrieve the next set of cluster nodes, use the token in the next request.
sort_by (str | None) – The field by which to sort results. The default value is CREATION_TIME.
sort_order (str | None) – The sort order for results. The default value is Ascending.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
Iterator for listed ClusterNodeDetails.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
ResourceIterator[ClusterNodeDetails]
- get_node(node_id, session=None, region=None)[source]
Retrieves information of a node (also called a instance interchangeably) of a SageMaker HyperPod cluster.
- Parameters:
- Returns:
ClusterNodeDetails
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
ClusterNodeDetails | None
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'protected_namespaces': (), 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- refresh()[source]
Refresh a Cluster resource
- Returns:
The Cluster resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
Cluster | None
- update(instance_groups, node_recovery=<sagemaker_core.main.utils.Unassigned object>)[source]
Update a Cluster resource
- Returns:
The Cluster resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ConflictException – There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
ResourceNotFound – Resource being access is not found.
- Parameters:
- Return type:
Cluster | None
- update_software(session=None, region=None)[source]
Updates the platform software of a SageMaker HyperPod cluster for security patching.
- Parameters:
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ConflictException – There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.
ResourceNotFound – Resource being access is not found.
- Return type:
None
- wait_for_delete(poll=5, timeout=None)[source]
Wait for a Cluster resource to be deleted.
- Parameters:
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
TimeoutExceededError – If the resource does not reach a terminal state before the timeout.
DeleteFailedStatusError – If the resource reaches a failed state.
WaiterError – Raised when an error occurs while waiting.
- Return type:
None
- wait_for_status(target_status, poll=5, timeout=None)[source]
Wait for a Cluster resource to reach certain status.
- Parameters:
- Raises:
TimeoutExceededError – If the resource does not reach a terminal state before the timeout.
FailedStatusError – If the resource reaches a failed state.
WaiterError – Raised when an error occurs while waiting.
- Return type:
None
- class sagemaker_core.main.resources.CodeRepository(*, code_repository_name, code_repository_arn=<sagemaker_core.main.utils.Unassigned object>, creation_time=<sagemaker_core.main.utils.Unassigned object>, last_modified_time=<sagemaker_core.main.utils.Unassigned object>, git_config=<sagemaker_core.main.utils.Unassigned object>)[source]
Class representing resource CodeRepository
- Parameters:
- code_repository_name
The name of the Git repository.
- Type:
- code_repository_arn
The Amazon Resource Name (ARN) of the Git repository.
- Type:
str | None
- creation_time
The date and time that the repository was created.
- Type:
datetime.datetime | None
- last_modified_time
The date and time that the repository was last changed.
- Type:
datetime.datetime | None
- git_config
Configuration details about the repository, including the URL where the repository is located, the default branch, and the Amazon Resource Name (ARN) of the Amazon Web Services Secrets Manager secret that contains the credentials used to access the repository.
- Type:
sagemaker_core.main.shapes.GitConfig | None
- classmethod create(code_repository_name, git_config, tags=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Create a CodeRepository resource
- Parameters:
code_repository_name (str) – The name of the Git repository. The name must have 1 to 63 characters. Valid characters are a-z, A-Z, 0-9, and - (hyphen).
git_config (GitConfig) – Specifies details about the repository, including the URL where the repository is located, the default branch, and credentials to use to access the repository.
tags (List[Tag] | None) – An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
The CodeRepository resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ConfigSchemaValidationError – Raised when a configuration file does not adhere to the schema
LocalConfigNotFoundError – Raised when a configuration file is not found in local file system
S3ConfigNotFoundError – Raised when a configuration file is not found in S3
- Return type:
CodeRepository | None
- delete()[source]
Delete a CodeRepository resource
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
None
- classmethod get(code_repository_name, session=None, region=None)[source]
Get a CodeRepository resource
- Parameters:
- Returns:
The CodeRepository resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
CodeRepository | None
- classmethod get_all(creation_time_after=<sagemaker_core.main.utils.Unassigned object>, creation_time_before=<sagemaker_core.main.utils.Unassigned object>, last_modified_time_after=<sagemaker_core.main.utils.Unassigned object>, last_modified_time_before=<sagemaker_core.main.utils.Unassigned object>, name_contains=<sagemaker_core.main.utils.Unassigned object>, sort_by=<sagemaker_core.main.utils.Unassigned object>, sort_order=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Gets a list of the Git repositories in your account.
- Parameters:
creation_time_after (datetime | None) – A filter that returns only Git repositories that were created after the specified time.
creation_time_before (datetime | None) – A filter that returns only Git repositories that were created before the specified time.
last_modified_time_after (datetime | None) – A filter that returns only Git repositories that were last modified after the specified time.
last_modified_time_before (datetime | None) – A filter that returns only Git repositories that were last modified before the specified time.
max_results – The maximum number of Git repositories to return in the response.
name_contains (str | None) – A string in the Git repositories name. This filter returns only repositories whose name contains the specified string.
next_token – If the result of a ListCodeRepositoriesOutput request was truncated, the response includes a NextToken. To get the next set of Git repositories, use the token in the next request.
sort_by (str | None) – The field to sort results by. The default is Name.
sort_order (str | None) – The sort order for results. The default is Ascending.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
Iterator for listed CodeRepository.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
ResourceIterator[CodeRepository]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'protected_namespaces': (), 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- refresh()[source]
Refresh a CodeRepository resource
- Returns:
The CodeRepository resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
CodeRepository | None
- update(git_config=<sagemaker_core.main.utils.Unassigned object>)[source]
Update a CodeRepository resource
- Returns:
The CodeRepository resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ConflictException – There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.
- Parameters:
git_config (GitConfigForUpdate | None)
- Return type:
CodeRepository | None
- class sagemaker_core.main.resources.CompilationJob(*, compilation_job_name, compilation_job_arn=<sagemaker_core.main.utils.Unassigned object>, compilation_job_status=<sagemaker_core.main.utils.Unassigned object>, compilation_start_time=<sagemaker_core.main.utils.Unassigned object>, compilation_end_time=<sagemaker_core.main.utils.Unassigned object>, stopping_condition=<sagemaker_core.main.utils.Unassigned object>, inference_image=<sagemaker_core.main.utils.Unassigned object>, model_package_version_arn=<sagemaker_core.main.utils.Unassigned object>, creation_time=<sagemaker_core.main.utils.Unassigned object>, last_modified_time=<sagemaker_core.main.utils.Unassigned object>, failure_reason=<sagemaker_core.main.utils.Unassigned object>, model_artifacts=<sagemaker_core.main.utils.Unassigned object>, model_digests=<sagemaker_core.main.utils.Unassigned object>, role_arn=<sagemaker_core.main.utils.Unassigned object>, input_config=<sagemaker_core.main.utils.Unassigned object>, output_config=<sagemaker_core.main.utils.Unassigned object>, vpc_config=<sagemaker_core.main.utils.Unassigned object>, derived_information=<sagemaker_core.main.utils.Unassigned object>)[source]
Class representing resource CompilationJob
- Parameters:
compilation_job_name (str)
compilation_job_arn (str | None)
compilation_job_status (str | None)
compilation_start_time (datetime | None)
compilation_end_time (datetime | None)
stopping_condition (StoppingCondition | None)
inference_image (str | None)
model_package_version_arn (str | None)
creation_time (datetime | None)
last_modified_time (datetime | None)
failure_reason (str | None)
model_artifacts (ModelArtifacts | None)
model_digests (ModelDigests | None)
role_arn (str | None)
input_config (InputConfig | None)
output_config (OutputConfig | None)
vpc_config (NeoVpcConfig | None)
derived_information (DerivedInformation | None)
- compilation_job_name
The name of the model compilation job.
- Type:
- compilation_job_arn
The Amazon Resource Name (ARN) of the model compilation job.
- Type:
str | None
- compilation_job_status
The status of the model compilation job.
- Type:
str | None
- stopping_condition
Specifies a limit to how long a model compilation job can run. When the job reaches the time limit, Amazon SageMaker ends the compilation job. Use this API to cap model training costs.
- Type:
sagemaker_core.main.shapes.StoppingCondition | None
- creation_time
The time that the model compilation job was created.
- Type:
datetime.datetime | None
- last_modified_time
The time that the status of the model compilation job was last modified.
- Type:
datetime.datetime | None
- failure_reason
If a model compilation job failed, the reason it failed.
- Type:
str | None
- model_artifacts
Information about the location in Amazon S3 that has been configured for storing the model artifacts used in the compilation job.
- Type:
sagemaker_core.main.shapes.ModelArtifacts | None
- role_arn
The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker assumes to perform the model compilation job.
- Type:
str | None
- input_config
Information about the location in Amazon S3 of the input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.
- Type:
sagemaker_core.main.shapes.InputConfig | None
- output_config
Information about the output location for the compiled model and the target device that the model runs on.
- Type:
sagemaker_core.main.shapes.OutputConfig | None
- compilation_start_time
The time when the model compilation job started the CompilationJob instances. You are billed for the time between this timestamp and the timestamp in the CompilationEndTime field. In Amazon CloudWatch Logs, the start time might be later than this time. That’s because it takes time to download the compilation job, which depends on the size of the compilation job container.
- Type:
datetime.datetime | None
- compilation_end_time
The time when the model compilation job on a compilation job instance ended. For a successful or stopped job, this is when the job’s model artifacts have finished uploading. For a failed job, this is when Amazon SageMaker detected that the job failed.
- Type:
datetime.datetime | None
- inference_image
The inference image to use when compiling a model. Specify an image only if the target device is a cloud instance.
- Type:
str | None
- model_package_version_arn
The Amazon Resource Name (ARN) of the versioned model package that was provided to SageMaker Neo when you initiated a compilation job.
- Type:
str | None
- model_digests
Provides a BLAKE2 hash value that identifies the compiled model artifacts in Amazon S3.
- Type:
sagemaker_core.main.shapes.ModelDigests | None
- vpc_config
A VpcConfig object that specifies the VPC that you want your compilation job to connect to. Control access to your models by configuring the VPC. For more information, see Protect Compilation Jobs by Using an Amazon Virtual Private Cloud.
- Type:
sagemaker_core.main.shapes.NeoVpcConfig | None
- derived_information
Information that SageMaker Neo automatically derived about the model.
- Type:
sagemaker_core.main.shapes.DerivedInformation | None
- classmethod create(compilation_job_name, role_arn, output_config, stopping_condition, model_package_version_arn=<sagemaker_core.main.utils.Unassigned object>, input_config=<sagemaker_core.main.utils.Unassigned object>, vpc_config=<sagemaker_core.main.utils.Unassigned object>, tags=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Create a CompilationJob resource
- Parameters:
compilation_job_name (str) – A name for the model compilation job. The name must be unique within the Amazon Web Services Region and within your Amazon Web Services account.
role_arn (str) – The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to perform tasks on your behalf. During model compilation, Amazon SageMaker needs your permission to: Read input data from an S3 bucket Write model artifacts to an S3 bucket Write logs to Amazon CloudWatch Logs Publish metrics to Amazon CloudWatch You grant permissions for all of these tasks to an IAM role. To pass this role to Amazon SageMaker, the caller of this API must have the iam:PassRole permission. For more information, see Amazon SageMaker Roles.
output_config (OutputConfig) – Provides information about the output location for the compiled model and the target device the model runs on.
stopping_condition (StoppingCondition) – Specifies a limit to how long a model compilation job can run. When the job reaches the time limit, Amazon SageMaker ends the compilation job. Use this API to cap model training costs.
model_package_version_arn (str | None) – The Amazon Resource Name (ARN) of a versioned model package. Provide either a ModelPackageVersionArn or an InputConfig object in the request syntax. The presence of both objects in the CreateCompilationJob request will return an exception.
input_config (InputConfig | None) – Provides information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.
vpc_config (NeoVpcConfig | None) – A VpcConfig object that specifies the VPC that you want your compilation job to connect to. Control access to your models by configuring the VPC. For more information, see Protect Compilation Jobs by Using an Amazon Virtual Private Cloud.
tags (List[Tag] | None) – An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
The CompilationJob resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceInUse – Resource being accessed is in use.
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
ConfigSchemaValidationError – Raised when a configuration file does not adhere to the schema
LocalConfigNotFoundError – Raised when a configuration file is not found in local file system
S3ConfigNotFoundError – Raised when a configuration file is not found in S3
- Return type:
CompilationJob | None
- delete()[source]
Delete a CompilationJob resource
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
None
- classmethod get(compilation_job_name, session=None, region=None)[source]
Get a CompilationJob resource
- Parameters:
- Returns:
The CompilationJob resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
CompilationJob | None
- classmethod get_all(creation_time_after=<sagemaker_core.main.utils.Unassigned object>, creation_time_before=<sagemaker_core.main.utils.Unassigned object>, last_modified_time_after=<sagemaker_core.main.utils.Unassigned object>, last_modified_time_before=<sagemaker_core.main.utils.Unassigned object>, name_contains=<sagemaker_core.main.utils.Unassigned object>, status_equals=<sagemaker_core.main.utils.Unassigned object>, sort_by=<sagemaker_core.main.utils.Unassigned object>, sort_order=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Get all CompilationJob resources
- Parameters:
next_token – If the result of the previous ListCompilationJobs request was truncated, the response includes a NextToken. To retrieve the next set of model compilation jobs, use the token in the next request.
max_results – The maximum number of model compilation jobs to return in the response.
creation_time_after (datetime | None) – A filter that returns the model compilation jobs that were created after a specified time.
creation_time_before (datetime | None) – A filter that returns the model compilation jobs that were created before a specified time.
last_modified_time_after (datetime | None) – A filter that returns the model compilation jobs that were modified after a specified time.
last_modified_time_before (datetime | None) – A filter that returns the model compilation jobs that were modified before a specified time.
name_contains (str | None) – A filter that returns the model compilation jobs whose name contains a specified string.
status_equals (str | None) – A filter that retrieves model compilation jobs with a specific CompilationJobStatus status.
sort_by (str | None) – The field by which to sort results. The default is CreationTime.
sort_order (str | None) – The sort order for results. The default is Ascending.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
Iterator for listed CompilationJob resources.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
ResourceIterator[CompilationJob]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'protected_namespaces': (), 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- refresh()[source]
Refresh a CompilationJob resource
- Returns:
The CompilationJob resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
CompilationJob | None
- stop()[source]
Stop a CompilationJob resource
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
None
- wait(poll=5, timeout=None)[source]
Wait for a CompilationJob resource.
- Parameters:
- Raises:
TimeoutExceededError – If the resource does not reach a terminal state before the timeout.
FailedStatusError – If the resource reaches a failed state.
WaiterError – Raised when an error occurs while waiting.
- Return type:
None
- class sagemaker_core.main.resources.Context(*, context_name, context_arn=<sagemaker_core.main.utils.Unassigned object>, source=<sagemaker_core.main.utils.Unassigned object>, context_type=<sagemaker_core.main.utils.Unassigned object>, description=<sagemaker_core.main.utils.Unassigned object>, properties=<sagemaker_core.main.utils.Unassigned object>, creation_time=<sagemaker_core.main.utils.Unassigned object>, created_by=<sagemaker_core.main.utils.Unassigned object>, last_modified_time=<sagemaker_core.main.utils.Unassigned object>, last_modified_by=<sagemaker_core.main.utils.Unassigned object>, lineage_group_arn=<sagemaker_core.main.utils.Unassigned object>)[source]
Class representing resource Context
- Parameters:
- context_name
The name of the context.
- Type:
- context_arn
The Amazon Resource Name (ARN) of the context.
- Type:
str | None
- source
The source of the context.
- Type:
sagemaker_core.main.shapes.ContextSource | None
- context_type
The type of the context.
- Type:
str | None
- description
The description of the context.
- Type:
str | None
- creation_time
When the context was created.
- Type:
datetime.datetime | None
- created_by
- Type:
sagemaker_core.main.shapes.UserContext | None
- last_modified_time
When the context was last modified.
- Type:
datetime.datetime | None
- last_modified_by
- Type:
sagemaker_core.main.shapes.UserContext | None
- lineage_group_arn
The Amazon Resource Name (ARN) of the lineage group.
- Type:
str | None
- classmethod create(context_name, source, context_type, description=<sagemaker_core.main.utils.Unassigned object>, properties=<sagemaker_core.main.utils.Unassigned object>, tags=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Create a Context resource
- Parameters:
context_name (str) – The name of the context. Must be unique to your account in an Amazon Web Services Region.
source (ContextSource) – The source type, ID, and URI.
context_type (str) – The context type.
description (str | None) – The description of the context.
properties (Dict[str, str] | None) – A list of properties to add to the context.
tags (List[Tag] | None) – A list of tags to apply to the context.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
The Context resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
ConfigSchemaValidationError – Raised when a configuration file does not adhere to the schema
LocalConfigNotFoundError – Raised when a configuration file is not found in local file system
S3ConfigNotFoundError – Raised when a configuration file is not found in S3
- Return type:
Context | None
- delete()[source]
Delete a Context resource
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
None
- classmethod get(context_name, session=None, region=None)[source]
Get a Context resource
- Parameters:
- Returns:
The Context resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
Context | None
- classmethod get_all(source_uri=<sagemaker_core.main.utils.Unassigned object>, context_type=<sagemaker_core.main.utils.Unassigned object>, created_after=<sagemaker_core.main.utils.Unassigned object>, created_before=<sagemaker_core.main.utils.Unassigned object>, sort_by=<sagemaker_core.main.utils.Unassigned object>, sort_order=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Get all Context resources
- Parameters:
source_uri (str | None) – A filter that returns only contexts with the specified source URI.
context_type (str | None) – A filter that returns only contexts of the specified type.
created_after (datetime | None) – A filter that returns only contexts created on or after the specified time.
created_before (datetime | None) – A filter that returns only contexts created on or before the specified time.
sort_by (str | None) – The property used to sort results. The default value is CreationTime.
sort_order (str | None) – The sort order. The default value is Descending.
next_token – If the previous call to ListContexts didn’t return the full set of contexts, the call returns a token for getting the next set of contexts.
max_results – The maximum number of contexts to return in the response. The default value is 10.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
Iterator for listed Context resources.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
ResourceIterator[Context]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'protected_namespaces': (), 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- refresh()[source]
Refresh a Context resource
- Returns:
The Context resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
Context | None
- update(description=<sagemaker_core.main.utils.Unassigned object>, properties=<sagemaker_core.main.utils.Unassigned object>, properties_to_remove=<sagemaker_core.main.utils.Unassigned object>)[source]
Update a Context resource
- Parameters:
- Returns:
The Context resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ConflictException – There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.
ResourceNotFound – Resource being access is not found.
- Return type:
Context | None
- class sagemaker_core.main.resources.DataQualityJobDefinition(*, job_definition_name, job_definition_arn=<sagemaker_core.main.utils.Unassigned object>, creation_time=<sagemaker_core.main.utils.Unassigned object>, data_quality_baseline_config=<sagemaker_core.main.utils.Unassigned object>, data_quality_app_specification=<sagemaker_core.main.utils.Unassigned object>, data_quality_job_input=<sagemaker_core.main.utils.Unassigned object>, data_quality_job_output_config=<sagemaker_core.main.utils.Unassigned object>, job_resources=<sagemaker_core.main.utils.Unassigned object>, network_config=<sagemaker_core.main.utils.Unassigned object>, role_arn=<sagemaker_core.main.utils.Unassigned object>, stopping_condition=<sagemaker_core.main.utils.Unassigned object>)[source]
Class representing resource DataQualityJobDefinition
- Parameters:
job_definition_name (str)
job_definition_arn (str | None)
creation_time (datetime | None)
data_quality_baseline_config (DataQualityBaselineConfig | None)
data_quality_app_specification (DataQualityAppSpecification | None)
data_quality_job_input (DataQualityJobInput | None)
data_quality_job_output_config (MonitoringOutputConfig | None)
job_resources (MonitoringResources | None)
network_config (MonitoringNetworkConfig | None)
role_arn (str | None)
stopping_condition (MonitoringStoppingCondition | None)
- job_definition_arn
The Amazon Resource Name (ARN) of the data quality monitoring job definition.
- Type:
str | None
- job_definition_name
The name of the data quality monitoring job definition.
- Type:
- creation_time
The time that the data quality monitoring job definition was created.
- Type:
datetime.datetime | None
- data_quality_app_specification
Information about the container that runs the data quality monitoring job.
- Type:
sagemaker_core.main.shapes.DataQualityAppSpecification | None
- data_quality_job_input
The list of inputs for the data quality monitoring job. Currently endpoints are supported.
- Type:
sagemaker_core.main.shapes.DataQualityJobInput | None
- data_quality_job_output_config
- Type:
sagemaker_core.main.shapes.MonitoringOutputConfig | None
- job_resources
- Type:
sagemaker_core.main.shapes.MonitoringResources | None
- role_arn
The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
- Type:
str | None
- data_quality_baseline_config
The constraints and baselines for the data quality monitoring job definition.
- Type:
sagemaker_core.main.shapes.DataQualityBaselineConfig | None
- network_config
The networking configuration for the data quality monitoring job.
- Type:
sagemaker_core.main.shapes.MonitoringNetworkConfig | None
- stopping_condition
- Type:
sagemaker_core.main.shapes.MonitoringStoppingCondition | None
- classmethod create(job_definition_name, data_quality_app_specification, data_quality_job_input, data_quality_job_output_config, job_resources, role_arn, data_quality_baseline_config=<sagemaker_core.main.utils.Unassigned object>, network_config=<sagemaker_core.main.utils.Unassigned object>, stopping_condition=<sagemaker_core.main.utils.Unassigned object>, tags=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Create a DataQualityJobDefinition resource
- Parameters:
job_definition_name (str) – The name for the monitoring job definition.
data_quality_app_specification (DataQualityAppSpecification) – Specifies the container that runs the monitoring job.
data_quality_job_input (DataQualityJobInput) – A list of inputs for the monitoring job. Currently endpoints are supported as monitoring inputs.
data_quality_job_output_config (MonitoringOutputConfig)
job_resources (MonitoringResources)
role_arn (str) – The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
data_quality_baseline_config (DataQualityBaselineConfig | None) – Configures the constraints and baselines for the monitoring job.
network_config (MonitoringNetworkConfig | None) – Specifies networking configuration for the monitoring job.
stopping_condition (MonitoringStoppingCondition | None)
tags (List[Tag] | None) – (Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
The DataQualityJobDefinition resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceInUse – Resource being accessed is in use.
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
ConfigSchemaValidationError – Raised when a configuration file does not adhere to the schema
LocalConfigNotFoundError – Raised when a configuration file is not found in local file system
S3ConfigNotFoundError – Raised when a configuration file is not found in S3
- Return type:
DataQualityJobDefinition | None
- delete()[source]
Delete a DataQualityJobDefinition resource
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
None
- classmethod get(job_definition_name, session=None, region=None)[source]
Get a DataQualityJobDefinition resource
- Parameters:
- Returns:
The DataQualityJobDefinition resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
DataQualityJobDefinition | None
- classmethod get_all(endpoint_name=<sagemaker_core.main.utils.Unassigned object>, sort_by=<sagemaker_core.main.utils.Unassigned object>, sort_order=<sagemaker_core.main.utils.Unassigned object>, name_contains=<sagemaker_core.main.utils.Unassigned object>, creation_time_before=<sagemaker_core.main.utils.Unassigned object>, creation_time_after=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Get all DataQualityJobDefinition resources
- Parameters:
endpoint_name (str | None) – A filter that lists the data quality job definitions associated with the specified endpoint.
sort_by (str | None) – The field to sort results by. The default is CreationTime.
sort_order (str | None) – Whether to sort the results in Ascending or Descending order. The default is Descending.
next_token – If the result of the previous ListDataQualityJobDefinitions request was truncated, the response includes a NextToken. To retrieve the next set of transform jobs, use the token in the next request.>
max_results – The maximum number of data quality monitoring job definitions to return in the response.
name_contains (str | None) – A string in the data quality monitoring job definition name. This filter returns only data quality monitoring job definitions whose name contains the specified string.
creation_time_before (datetime | None) – A filter that returns only data quality monitoring job definitions created before the specified time.
creation_time_after (datetime | None) – A filter that returns only data quality monitoring job definitions created after the specified time.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
Iterator for listed DataQualityJobDefinition resources.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
ResourceIterator[DataQualityJobDefinition]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'protected_namespaces': (), 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- refresh()[source]
Refresh a DataQualityJobDefinition resource
- Returns:
The DataQualityJobDefinition resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
DataQualityJobDefinition | None
- class sagemaker_core.main.resources.Device(*, device_name, device_fleet_name, device_arn=<sagemaker_core.main.utils.Unassigned object>, description=<sagemaker_core.main.utils.Unassigned object>, iot_thing_name=<sagemaker_core.main.utils.Unassigned object>, registration_time=<sagemaker_core.main.utils.Unassigned object>, latest_heartbeat=<sagemaker_core.main.utils.Unassigned object>, models=<sagemaker_core.main.utils.Unassigned object>, max_models=<sagemaker_core.main.utils.Unassigned object>, next_token=<sagemaker_core.main.utils.Unassigned object>, agent_version=<sagemaker_core.main.utils.Unassigned object>)[source]
Class representing resource Device
- Parameters:
- device_name
The unique identifier of the device.
- Type:
- device_fleet_name
The name of the fleet the device belongs to.
- Type:
- registration_time
The timestamp of the last registration or de-reregistration.
- Type:
datetime.datetime | None
- device_arn
The Amazon Resource Name (ARN) of the device.
- Type:
str | None
- description
A description of the device.
- Type:
str | None
- iot_thing_name
The Amazon Web Services Internet of Things (IoT) object thing name associated with the device.
- Type:
str | None
- latest_heartbeat
The last heartbeat received from the device.
- Type:
datetime.datetime | None
- models
Models on the device.
- Type:
List[sagemaker_core.main.shapes.EdgeModel] | None
- max_models
The maximum number of models.
- Type:
int | None
- next_token
The response from the last list when returning a list large enough to need tokening.
- Type:
str | None
- agent_version
Edge Manager agent version.
- Type:
str | None
- classmethod get(device_name, device_fleet_name, next_token=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Get a Device resource
- Parameters:
- Returns:
The Device resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
Device | None
- classmethod get_all(latest_heartbeat_after=<sagemaker_core.main.utils.Unassigned object>, model_name=<sagemaker_core.main.utils.Unassigned object>, device_fleet_name=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Get all Device resources
- Parameters:
next_token – The response from the last list when returning a list large enough to need tokening.
max_results – Maximum number of results to select.
latest_heartbeat_after (datetime | None) – Select fleets where the job was updated after X
model_name (str | None) – A filter that searches devices that contains this name in any of their models.
device_fleet_name (str | None) – Filter for fleets containing this name in their device fleet name.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
Iterator for listed Device resources.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
ResourceIterator[Device]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'protected_namespaces': (), 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- refresh()[source]
Refresh a Device resource
- Returns:
The Device resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
Device | None
- class sagemaker_core.main.resources.DeviceFleet(*, device_fleet_name, device_fleet_arn=<sagemaker_core.main.utils.Unassigned object>, output_config=<sagemaker_core.main.utils.Unassigned object>, description=<sagemaker_core.main.utils.Unassigned object>, creation_time=<sagemaker_core.main.utils.Unassigned object>, last_modified_time=<sagemaker_core.main.utils.Unassigned object>, role_arn=<sagemaker_core.main.utils.Unassigned object>, iot_role_alias=<sagemaker_core.main.utils.Unassigned object>)[source]
Class representing resource DeviceFleet
- Parameters:
- device_fleet_name
The name of the fleet.
- Type:
- device_fleet_arn
The The Amazon Resource Name (ARN) of the fleet.
- Type:
str | None
- output_config
The output configuration for storing sampled data.
- Type:
sagemaker_core.main.shapes.EdgeOutputConfig | None
- creation_time
Timestamp of when the device fleet was created.
- Type:
datetime.datetime | None
- last_modified_time
Timestamp of when the device fleet was last updated.
- Type:
datetime.datetime | None
- description
A description of the fleet.
- Type:
str | None
- role_arn
The Amazon Resource Name (ARN) that has access to Amazon Web Services Internet of Things (IoT).
- Type:
str | None
- iot_role_alias
The Amazon Resource Name (ARN) alias created in Amazon Web Services Internet of Things (IoT).
- Type:
str | None
- classmethod create(device_fleet_name, output_config, role_arn=<sagemaker_core.main.utils.Unassigned object>, description=<sagemaker_core.main.utils.Unassigned object>, tags=<sagemaker_core.main.utils.Unassigned object>, enable_iot_role_alias=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Create a DeviceFleet resource
- Parameters:
device_fleet_name (str) – The name of the fleet that the device belongs to.
output_config (EdgeOutputConfig) – The output configuration for storing sample data collected by the fleet.
role_arn (str | None) – The Amazon Resource Name (ARN) that has access to Amazon Web Services Internet of Things (IoT).
description (str | None) – A description of the fleet.
tags (List[Tag] | None) – Creates tags for the specified fleet.
enable_iot_role_alias (bool | None) – Whether to create an Amazon Web Services IoT Role Alias during device fleet creation. The name of the role alias generated will match this pattern: “SageMakerEdge-{DeviceFleetName}”. For example, if your device fleet is called “demo-fleet”, the name of the role alias will be “SageMakerEdge-demo-fleet”.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
The DeviceFleet resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceInUse – Resource being accessed is in use.
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
ConfigSchemaValidationError – Raised when a configuration file does not adhere to the schema
LocalConfigNotFoundError – Raised when a configuration file is not found in local file system
S3ConfigNotFoundError – Raised when a configuration file is not found in S3
- Return type:
DeviceFleet | None
- delete()[source]
Delete a DeviceFleet resource
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceInUse – Resource being accessed is in use.
- Return type:
None
- deregister_devices(device_names, session=None, region=None)[source]
Deregisters the specified devices.
- Parameters:
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
None
- classmethod get(device_fleet_name, session=None, region=None)[source]
Get a DeviceFleet resource
- Parameters:
- Returns:
The DeviceFleet resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
DeviceFleet | None
- classmethod get_all(creation_time_after=<sagemaker_core.main.utils.Unassigned object>, creation_time_before=<sagemaker_core.main.utils.Unassigned object>, last_modified_time_after=<sagemaker_core.main.utils.Unassigned object>, last_modified_time_before=<sagemaker_core.main.utils.Unassigned object>, name_contains=<sagemaker_core.main.utils.Unassigned object>, sort_by=<sagemaker_core.main.utils.Unassigned object>, sort_order=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Get all DeviceFleet resources
- Parameters:
next_token – The response from the last list when returning a list large enough to need tokening.
max_results – The maximum number of results to select.
creation_time_after (datetime | None) – Filter fleets where packaging job was created after specified time.
creation_time_before (datetime | None) – Filter fleets where the edge packaging job was created before specified time.
last_modified_time_after (datetime | None) – Select fleets where the job was updated after X
last_modified_time_before (datetime | None) – Select fleets where the job was updated before X
name_contains (str | None) – Filter for fleets containing this name in their fleet device name.
sort_by (str | None) – The column to sort by.
sort_order (str | None) – What direction to sort in.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
Iterator for listed DeviceFleet resources.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
ResourceIterator[DeviceFleet]
- get_report(session=None, region=None)[source]
Describes a fleet.
- Parameters:
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
GetDeviceFleetReportResponse
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
GetDeviceFleetReportResponse | None
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'protected_namespaces': (), 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- refresh()[source]
Refresh a DeviceFleet resource
- Returns:
The DeviceFleet resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
DeviceFleet | None
- register_devices(devices, tags=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Register devices.
- Parameters:
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
- Return type:
None
- update(output_config, role_arn=<sagemaker_core.main.utils.Unassigned object>, description=<sagemaker_core.main.utils.Unassigned object>, enable_iot_role_alias=<sagemaker_core.main.utils.Unassigned object>)[source]
Update a DeviceFleet resource
- Parameters:
enable_iot_role_alias (bool | None) – Whether to create an Amazon Web Services IoT Role Alias during device fleet creation. The name of the role alias generated will match this pattern: “SageMakerEdge-{DeviceFleetName}”. For example, if your device fleet is called “demo-fleet”, the name of the role alias will be “SageMakerEdge-demo-fleet”.
output_config (EdgeOutputConfig)
role_arn (str | None)
description (str | None)
- Returns:
The DeviceFleet resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceInUse – Resource being accessed is in use.
- Return type:
DeviceFleet | None
- update_devices(devices, session=None, region=None)[source]
Updates one or more devices in a fleet.
- Parameters:
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
None
- class sagemaker_core.main.resources.Domain(*, domain_id, domain_arn=<sagemaker_core.main.utils.Unassigned object>, domain_name=<sagemaker_core.main.utils.Unassigned object>, home_efs_file_system_id=<sagemaker_core.main.utils.Unassigned object>, single_sign_on_managed_application_instance_id=<sagemaker_core.main.utils.Unassigned object>, single_sign_on_application_arn=<sagemaker_core.main.utils.Unassigned object>, status=<sagemaker_core.main.utils.Unassigned object>, creation_time=<sagemaker_core.main.utils.Unassigned object>, last_modified_time=<sagemaker_core.main.utils.Unassigned object>, failure_reason=<sagemaker_core.main.utils.Unassigned object>, security_group_id_for_domain_boundary=<sagemaker_core.main.utils.Unassigned object>, auth_mode=<sagemaker_core.main.utils.Unassigned object>, default_user_settings=<sagemaker_core.main.utils.Unassigned object>, domain_settings=<sagemaker_core.main.utils.Unassigned object>, app_network_access_type=<sagemaker_core.main.utils.Unassigned object>, home_efs_file_system_kms_key_id=<sagemaker_core.main.utils.Unassigned object>, subnet_ids=<sagemaker_core.main.utils.Unassigned object>, url=<sagemaker_core.main.utils.Unassigned object>, vpc_id=<sagemaker_core.main.utils.Unassigned object>, kms_key_id=<sagemaker_core.main.utils.Unassigned object>, app_security_group_management=<sagemaker_core.main.utils.Unassigned object>, tag_propagation=<sagemaker_core.main.utils.Unassigned object>, default_space_settings=<sagemaker_core.main.utils.Unassigned object>)[source]
Class representing resource Domain
- Parameters:
domain_id (str)
domain_arn (str | None)
domain_name (str | None)
home_efs_file_system_id (str | None)
single_sign_on_managed_application_instance_id (str | None)
single_sign_on_application_arn (str | None)
status (str | None)
creation_time (datetime | None)
last_modified_time (datetime | None)
failure_reason (str | None)
security_group_id_for_domain_boundary (str | None)
auth_mode (str | None)
default_user_settings (UserSettings | None)
domain_settings (DomainSettings | None)
app_network_access_type (str | None)
home_efs_file_system_kms_key_id (str | None)
url (str | None)
vpc_id (str | None)
kms_key_id (str | None)
app_security_group_management (str | None)
tag_propagation (str | None)
default_space_settings (DefaultSpaceSettings | None)
- domain_arn
The domain’s Amazon Resource Name (ARN).
- Type:
str | None
- domain_id
The domain ID.
- Type:
- domain_name
The domain name.
- Type:
str | None
- home_efs_file_system_id
The ID of the Amazon Elastic File System managed by this Domain.
- Type:
str | None
- single_sign_on_managed_application_instance_id
The IAM Identity Center managed application instance ID.
- Type:
str | None
- single_sign_on_application_arn
The ARN of the application managed by SageMaker in IAM Identity Center. This value is only returned for domains created after October 1, 2023.
- Type:
str | None
- status
The status.
- Type:
str | None
- creation_time
The creation time.
- Type:
datetime.datetime | None
- last_modified_time
The last modified time.
- Type:
datetime.datetime | None
- failure_reason
The failure reason.
- Type:
str | None
- security_group_id_for_domain_boundary
The ID of the security group that authorizes traffic between the RSessionGateway apps and the RStudioServerPro app.
- Type:
str | None
- auth_mode
The domain’s authentication mode.
- Type:
str | None
- default_user_settings
Settings which are applied to UserProfiles in this domain if settings are not explicitly specified in a given UserProfile.
- Type:
sagemaker_core.main.shapes.UserSettings | None
- domain_settings
A collection of Domain settings.
- Type:
sagemaker_core.main.shapes.DomainSettings | None
- app_network_access_type
Specifies the VPC used for non-EFS traffic. The default value is PublicInternetOnly. PublicInternetOnly - Non-EFS traffic is through a VPC managed by Amazon SageMaker, which allows direct internet access VpcOnly - All traffic is through the specified VPC and subnets
- Type:
str | None
- home_efs_file_system_kms_key_id
Use KmsKeyId.
- Type:
str | None
- subnet_ids
The VPC subnets that the domain uses for communication.
- Type:
List[str] | None
- url
The domain’s URL.
- Type:
str | None
- vpc_id
The ID of the Amazon Virtual Private Cloud (VPC) that the domain uses for communication.
- Type:
str | None
- kms_key_id
The Amazon Web Services KMS customer managed key used to encrypt the EFS volume attached to the domain.
- Type:
str | None
- app_security_group_management
The entity that creates and manages the required security groups for inter-app communication in VPCOnly mode. Required when CreateDomain.AppNetworkAccessType is VPCOnly and DomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn is provided.
- Type:
str | None
- tag_propagation
Indicates whether custom tag propagation is supported for the domain.
- Type:
str | None
- default_space_settings
The default settings for shared spaces that users create in the domain.
- Type:
sagemaker_core.main.shapes.DefaultSpaceSettings | None
- classmethod create(domain_name, auth_mode, default_user_settings, subnet_ids, vpc_id, domain_settings=<sagemaker_core.main.utils.Unassigned object>, tags=<sagemaker_core.main.utils.Unassigned object>, app_network_access_type=<sagemaker_core.main.utils.Unassigned object>, home_efs_file_system_kms_key_id=<sagemaker_core.main.utils.Unassigned object>, kms_key_id=<sagemaker_core.main.utils.Unassigned object>, app_security_group_management=<sagemaker_core.main.utils.Unassigned object>, tag_propagation=<sagemaker_core.main.utils.Unassigned object>, default_space_settings=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Create a Domain resource
- Parameters:
domain_name (str) – A name for the domain.
auth_mode (str) – The mode of authentication that members use to access the domain.
default_user_settings (UserSettings) – The default settings to use to create a user profile when UserSettings isn’t specified in the call to the CreateUserProfile API. SecurityGroups is aggregated when specified in both calls. For all other settings in UserSettings, the values specified in CreateUserProfile take precedence over those specified in CreateDomain.
subnet_ids (List[str]) – The VPC subnets that the domain uses for communication.
vpc_id (str) – The ID of the Amazon Virtual Private Cloud (VPC) that the domain uses for communication.
domain_settings (DomainSettings | None) – A collection of Domain settings.
tags (List[Tag] | None) – Tags to associated with the Domain. Each tag consists of a key and an optional value. Tag keys must be unique per resource. Tags are searchable using the Search API. Tags that you specify for the Domain are also added to all Apps that the Domain launches.
app_network_access_type (str | None) – Specifies the VPC used for non-EFS traffic. The default value is PublicInternetOnly. PublicInternetOnly - Non-EFS traffic is through a VPC managed by Amazon SageMaker, which allows direct internet access VpcOnly - All traffic is through the specified VPC and subnets
home_efs_file_system_kms_key_id (str | None) – Use KmsKeyId.
kms_key_id (str | None) – SageMaker uses Amazon Web Services KMS to encrypt EFS and EBS volumes attached to the domain with an Amazon Web Services managed key by default. For more control, specify a customer managed key.
app_security_group_management (str | None) – The entity that creates and manages the required security groups for inter-app communication in VPCOnly mode. Required when CreateDomain.AppNetworkAccessType is VPCOnly and DomainSettings.RStudioServerProDomainSettings.DomainExecutionRoleArn is provided. If setting up the domain for use with RStudio, this value must be set to Service.
tag_propagation (str | None) – Indicates whether custom tag propagation is supported for the domain. Defaults to DISABLED.
default_space_settings (DefaultSpaceSettings | None) – The default settings for shared spaces that users create in the domain.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
The Domain resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceInUse – Resource being accessed is in use.
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
ConfigSchemaValidationError – Raised when a configuration file does not adhere to the schema
LocalConfigNotFoundError – Raised when a configuration file is not found in local file system
S3ConfigNotFoundError – Raised when a configuration file is not found in S3
- Return type:
Domain | None
- delete(retention_policy=<sagemaker_core.main.utils.Unassigned object>)[source]
Delete a Domain resource
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceInUse – Resource being accessed is in use.
ResourceNotFound – Resource being access is not found.
- Parameters:
retention_policy (RetentionPolicy | None)
- Return type:
None
- classmethod get(domain_id, session=None, region=None)[source]
Get a Domain resource
- Parameters:
- Returns:
The Domain resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
Domain | None
- classmethod get_all(session=None, region=None)[source]
Get all Domain resources.
- Parameters:
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
Iterator for listed Domain resources.
- Return type:
ResourceIterator[Domain]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'protected_namespaces': (), 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- refresh()[source]
Refresh a Domain resource
- Returns:
The Domain resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
Domain | None
- update(default_user_settings=<sagemaker_core.main.utils.Unassigned object>, domain_settings_for_update=<sagemaker_core.main.utils.Unassigned object>, app_security_group_management=<sagemaker_core.main.utils.Unassigned object>, default_space_settings=<sagemaker_core.main.utils.Unassigned object>, subnet_ids=<sagemaker_core.main.utils.Unassigned object>, app_network_access_type=<sagemaker_core.main.utils.Unassigned object>, tag_propagation=<sagemaker_core.main.utils.Unassigned object>)[source]
Update a Domain resource
- Parameters:
domain_settings_for_update (DomainSettingsForUpdate | None) – A collection of DomainSettings configuration values to update.
default_user_settings (UserSettings | None)
app_security_group_management (str | None)
default_space_settings (DefaultSpaceSettings | None)
app_network_access_type (str | None)
tag_propagation (str | None)
- Returns:
The Domain resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceInUse – Resource being accessed is in use.
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
ResourceNotFound – Resource being access is not found.
- Return type:
Domain | None
- wait_for_delete(poll=5, timeout=None)[source]
Wait for a Domain resource to be deleted.
- Parameters:
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
TimeoutExceededError – If the resource does not reach a terminal state before the timeout.
DeleteFailedStatusError – If the resource reaches a failed state.
WaiterError – Raised when an error occurs while waiting.
- Return type:
None
- wait_for_status(target_status, poll=5, timeout=None)[source]
Wait for a Domain resource to reach certain status.
- Parameters:
- Raises:
TimeoutExceededError – If the resource does not reach a terminal state before the timeout.
FailedStatusError – If the resource reaches a failed state.
WaiterError – Raised when an error occurs while waiting.
- Return type:
None
- class sagemaker_core.main.resources.EdgeDeploymentPlan(*, edge_deployment_plan_name, edge_deployment_plan_arn=<sagemaker_core.main.utils.Unassigned object>, model_configs=<sagemaker_core.main.utils.Unassigned object>, device_fleet_name=<sagemaker_core.main.utils.Unassigned object>, edge_deployment_success=<sagemaker_core.main.utils.Unassigned object>, edge_deployment_pending=<sagemaker_core.main.utils.Unassigned object>, edge_deployment_failed=<sagemaker_core.main.utils.Unassigned object>, stages=<sagemaker_core.main.utils.Unassigned object>, next_token=<sagemaker_core.main.utils.Unassigned object>, creation_time=<sagemaker_core.main.utils.Unassigned object>, last_modified_time=<sagemaker_core.main.utils.Unassigned object>)[source]
Class representing resource EdgeDeploymentPlan
- Parameters:
edge_deployment_plan_name (str)
edge_deployment_plan_arn (str | None)
model_configs (List[EdgeDeploymentModelConfig] | None)
device_fleet_name (str | None)
edge_deployment_success (int | None)
edge_deployment_pending (int | None)
edge_deployment_failed (int | None)
stages (List[DeploymentStageStatusSummary] | None)
next_token (str | None)
creation_time (datetime | None)
last_modified_time (datetime | None)
- edge_deployment_plan_arn
The ARN of edge deployment plan.
- Type:
str | None
- edge_deployment_plan_name
The name of the edge deployment plan.
- Type:
- model_configs
List of models associated with the edge deployment plan.
- Type:
List[sagemaker_core.main.shapes.EdgeDeploymentModelConfig] | None
- device_fleet_name
The device fleet used for this edge deployment plan.
- Type:
str | None
- stages
List of stages in the edge deployment plan.
- Type:
List[sagemaker_core.main.shapes.DeploymentStageStatusSummary] | None
- edge_deployment_success
The number of edge devices with the successful deployment.
- Type:
int | None
- edge_deployment_pending
The number of edge devices yet to pick up deployment, or in progress.
- Type:
int | None
- edge_deployment_failed
The number of edge devices that failed the deployment.
- Type:
int | None
- next_token
Token to use when calling the next set of stages in the edge deployment plan.
- Type:
str | None
- creation_time
The time when the edge deployment plan was created.
- Type:
datetime.datetime | None
- last_modified_time
The time when the edge deployment plan was last updated.
- Type:
datetime.datetime | None
- classmethod create(edge_deployment_plan_name, model_configs, device_fleet_name, stages=<sagemaker_core.main.utils.Unassigned object>, tags=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Create a EdgeDeploymentPlan resource
- Parameters:
edge_deployment_plan_name (str) – The name of the edge deployment plan.
model_configs (List[EdgeDeploymentModelConfig]) – List of models associated with the edge deployment plan.
device_fleet_name (str | object) – The device fleet used for this edge deployment plan.
stages (List[DeploymentStage] | None) – List of stages of the edge deployment plan. The number of stages is limited to 10 per deployment.
tags (List[Tag] | None) – List of tags with which to tag the edge deployment plan.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
The EdgeDeploymentPlan resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
ConfigSchemaValidationError – Raised when a configuration file does not adhere to the schema
LocalConfigNotFoundError – Raised when a configuration file is not found in local file system
S3ConfigNotFoundError – Raised when a configuration file is not found in S3
- Return type:
EdgeDeploymentPlan | None
- create_stage(session=None, region=None)[source]
Creates a new stage in an existing edge deployment plan.
- Parameters:
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
- Return type:
None
- delete()[source]
Delete a EdgeDeploymentPlan resource
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceInUse – Resource being accessed is in use.
- Return type:
None
- delete_stage(stage_name, session=None, region=None)[source]
Delete a stage in an edge deployment plan if (and only if) the stage is inactive.
- Parameters:
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceInUse – Resource being accessed is in use.
- Return type:
None
- classmethod get(edge_deployment_plan_name, next_token=<sagemaker_core.main.utils.Unassigned object>, max_results=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Get a EdgeDeploymentPlan resource
- Parameters:
edge_deployment_plan_name (str) – The name of the deployment plan to describe.
next_token (str | None) – If the edge deployment plan has enough stages to require tokening, then this is the response from the last list of stages returned.
max_results (int | None) – The maximum number of results to select (50 by default).
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
The EdgeDeploymentPlan resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
EdgeDeploymentPlan | None
- classmethod get_all(creation_time_after=<sagemaker_core.main.utils.Unassigned object>, creation_time_before=<sagemaker_core.main.utils.Unassigned object>, last_modified_time_after=<sagemaker_core.main.utils.Unassigned object>, last_modified_time_before=<sagemaker_core.main.utils.Unassigned object>, name_contains=<sagemaker_core.main.utils.Unassigned object>, device_fleet_name_contains=<sagemaker_core.main.utils.Unassigned object>, sort_by=<sagemaker_core.main.utils.Unassigned object>, sort_order=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Get all EdgeDeploymentPlan resources
- Parameters:
next_token – The response from the last list when returning a list large enough to need tokening.
max_results – The maximum number of results to select (50 by default).
creation_time_after (datetime | None) – Selects edge deployment plans created after this time.
creation_time_before (datetime | None) – Selects edge deployment plans created before this time.
last_modified_time_after (datetime | None) – Selects edge deployment plans that were last updated after this time.
last_modified_time_before (datetime | None) – Selects edge deployment plans that were last updated before this time.
name_contains (str | None) – Selects edge deployment plans with names containing this name.
device_fleet_name_contains (str | None) – Selects edge deployment plans with a device fleet name containing this name.
sort_by (str | None) – The column by which to sort the edge deployment plans. Can be one of NAME, DEVICEFLEETNAME, CREATIONTIME, LASTMODIFIEDTIME.
sort_order (str | None) – The direction of the sorting (ascending or descending).
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
Iterator for listed EdgeDeploymentPlan resources.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
ResourceIterator[EdgeDeploymentPlan]
- get_all_stage_devices(stage_name, exclude_devices_deployed_in_other_stage=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Lists devices allocated to the stage, containing detailed device information and deployment status.
- Parameters:
stage_name (str) – The name of the stage in the deployment.
max_results – The maximum number of requests to select.
exclude_devices_deployed_in_other_stage (bool | None) – Toggle for excluding devices deployed in other stages.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
Iterator for listed DeviceDeploymentSummary.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
ResourceIterator[DeviceDeploymentSummary]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'protected_namespaces': (), 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- refresh(max_results=<sagemaker_core.main.utils.Unassigned object>)[source]
Refresh a EdgeDeploymentPlan resource
- Returns:
The EdgeDeploymentPlan resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Parameters:
max_results (int | None)
- Return type:
EdgeDeploymentPlan | None
- start_stage(stage_name, session=None, region=None)[source]
Starts a stage in an edge deployment plan.
- Parameters:
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
None
- stop_stage(stage_name, session=None, region=None)[source]
Stops a stage in an edge deployment plan.
- Parameters:
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
None
- class sagemaker_core.main.resources.EdgePackagingJob(*, edge_packaging_job_name, edge_packaging_job_arn=<sagemaker_core.main.utils.Unassigned object>, compilation_job_name=<sagemaker_core.main.utils.Unassigned object>, model_name=<sagemaker_core.main.utils.Unassigned object>, model_version=<sagemaker_core.main.utils.Unassigned object>, role_arn=<sagemaker_core.main.utils.Unassigned object>, output_config=<sagemaker_core.main.utils.Unassigned object>, resource_key=<sagemaker_core.main.utils.Unassigned object>, edge_packaging_job_status=<sagemaker_core.main.utils.Unassigned object>, edge_packaging_job_status_message=<sagemaker_core.main.utils.Unassigned object>, creation_time=<sagemaker_core.main.utils.Unassigned object>, last_modified_time=<sagemaker_core.main.utils.Unassigned object>, model_artifact=<sagemaker_core.main.utils.Unassigned object>, model_signature=<sagemaker_core.main.utils.Unassigned object>, preset_deployment_output=<sagemaker_core.main.utils.Unassigned object>)[source]
Class representing resource EdgePackagingJob
- Parameters:
edge_packaging_job_name (str)
edge_packaging_job_arn (str | None)
compilation_job_name (str | None)
model_name (str | None)
model_version (str | None)
role_arn (str | None)
output_config (EdgeOutputConfig | None)
resource_key (str | None)
edge_packaging_job_status (str | None)
edge_packaging_job_status_message (str | None)
creation_time (datetime | None)
last_modified_time (datetime | None)
model_artifact (str | None)
model_signature (str | None)
preset_deployment_output (EdgePresetDeploymentOutput | None)
- edge_packaging_job_arn
The Amazon Resource Name (ARN) of the edge packaging job.
- Type:
str | None
- edge_packaging_job_name
The name of the edge packaging job.
- Type:
- edge_packaging_job_status
The current status of the packaging job.
- Type:
str | None
- compilation_job_name
The name of the SageMaker Neo compilation job that is used to locate model artifacts that are being packaged.
- Type:
str | None
- model_name
The name of the model.
- Type:
str | None
- model_version
The version of the model.
- Type:
str | None
- role_arn
The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to download and upload the model, and to contact Neo.
- Type:
str | None
- output_config
The output configuration for the edge packaging job.
- Type:
sagemaker_core.main.shapes.EdgeOutputConfig | None
- resource_key
The Amazon Web Services KMS key to use when encrypting the EBS volume the job run on.
- Type:
str | None
- edge_packaging_job_status_message
Returns a message describing the job status and error messages.
- Type:
str | None
- creation_time
The timestamp of when the packaging job was created.
- Type:
datetime.datetime | None
- last_modified_time
The timestamp of when the job was last updated.
- Type:
datetime.datetime | None
- model_artifact
The Amazon Simple Storage (S3) URI where model artifacts ares stored.
- Type:
str | None
- model_signature
The signature document of files in the model artifact.
- Type:
str | None
- preset_deployment_output
The output of a SageMaker Edge Manager deployable resource.
- Type:
sagemaker_core.main.shapes.EdgePresetDeploymentOutput | None
- classmethod create(edge_packaging_job_name, compilation_job_name, model_name, model_version, role_arn, output_config, resource_key=<sagemaker_core.main.utils.Unassigned object>, tags=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Create a EdgePackagingJob resource
- Parameters:
edge_packaging_job_name (str) – The name of the edge packaging job.
compilation_job_name (str | object) – The name of the SageMaker Neo compilation job that will be used to locate model artifacts for packaging.
model_version (str) – The version of the model.
role_arn (str) – The Amazon Resource Name (ARN) of an IAM role that enables Amazon SageMaker to download and upload the model, and to contact SageMaker Neo.
output_config (EdgeOutputConfig) – Provides information about the output location for the packaged model.
resource_key (str | None) – The Amazon Web Services KMS key to use when encrypting the EBS volume the edge packaging job runs on.
tags (List[Tag] | None) – Creates tags for the packaging job.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
The EdgePackagingJob resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
ConfigSchemaValidationError – Raised when a configuration file does not adhere to the schema
LocalConfigNotFoundError – Raised when a configuration file is not found in local file system
S3ConfigNotFoundError – Raised when a configuration file is not found in S3
- Return type:
EdgePackagingJob | None
- classmethod get(edge_packaging_job_name, session=None, region=None)[source]
Get a EdgePackagingJob resource
- Parameters:
- Returns:
The EdgePackagingJob resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
EdgePackagingJob | None
- classmethod get_all(creation_time_after=<sagemaker_core.main.utils.Unassigned object>, creation_time_before=<sagemaker_core.main.utils.Unassigned object>, last_modified_time_after=<sagemaker_core.main.utils.Unassigned object>, last_modified_time_before=<sagemaker_core.main.utils.Unassigned object>, name_contains=<sagemaker_core.main.utils.Unassigned object>, model_name_contains=<sagemaker_core.main.utils.Unassigned object>, status_equals=<sagemaker_core.main.utils.Unassigned object>, sort_by=<sagemaker_core.main.utils.Unassigned object>, sort_order=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Get all EdgePackagingJob resources
- Parameters:
next_token – The response from the last list when returning a list large enough to need tokening.
max_results – Maximum number of results to select.
creation_time_after (datetime | None) – Select jobs where the job was created after specified time.
creation_time_before (datetime | None) – Select jobs where the job was created before specified time.
last_modified_time_after (datetime | None) – Select jobs where the job was updated after specified time.
last_modified_time_before (datetime | None) – Select jobs where the job was updated before specified time.
name_contains (str | None) – Filter for jobs containing this name in their packaging job name.
model_name_contains (str | None) – Filter for jobs where the model name contains this string.
status_equals (str | None) – The job status to filter for.
sort_by (str | None) – Use to specify what column to sort by.
sort_order (str | None) – What direction to sort by.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
Iterator for listed EdgePackagingJob resources.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
ResourceIterator[EdgePackagingJob]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'protected_namespaces': (), 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- refresh()[source]
Refresh a EdgePackagingJob resource
- Returns:
The EdgePackagingJob resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
EdgePackagingJob | None
- stop()[source]
Stop a EdgePackagingJob resource
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
None
- wait(poll=5, timeout=None)[source]
Wait for a EdgePackagingJob resource.
- Parameters:
- Raises:
TimeoutExceededError – If the resource does not reach a terminal state before the timeout.
FailedStatusError – If the resource reaches a failed state.
WaiterError – Raised when an error occurs while waiting.
- Return type:
None
- class sagemaker_core.main.resources.Endpoint(*, endpoint_name, endpoint_arn=<sagemaker_core.main.utils.Unassigned object>, endpoint_config_name=<sagemaker_core.main.utils.Unassigned object>, production_variants=<sagemaker_core.main.utils.Unassigned object>, data_capture_config=<sagemaker_core.main.utils.Unassigned object>, endpoint_status=<sagemaker_core.main.utils.Unassigned object>, failure_reason=<sagemaker_core.main.utils.Unassigned object>, creation_time=<sagemaker_core.main.utils.Unassigned object>, last_modified_time=<sagemaker_core.main.utils.Unassigned object>, last_deployment_config=<sagemaker_core.main.utils.Unassigned object>, async_inference_config=<sagemaker_core.main.utils.Unassigned object>, pending_deployment_summary=<sagemaker_core.main.utils.Unassigned object>, explainer_config=<sagemaker_core.main.utils.Unassigned object>, shadow_production_variants=<sagemaker_core.main.utils.Unassigned object>)[source]
Class representing resource Endpoint
- Parameters:
endpoint_name (str)
endpoint_arn (str | None)
endpoint_config_name (str | None)
production_variants (List[ProductionVariantSummary] | None)
data_capture_config (DataCaptureConfigSummary | None)
endpoint_status (str | None)
failure_reason (str | None)
creation_time (datetime | None)
last_modified_time (datetime | None)
last_deployment_config (DeploymentConfig | None)
async_inference_config (AsyncInferenceConfig | None)
pending_deployment_summary (PendingDeploymentSummary | None)
explainer_config (ExplainerConfig | None)
shadow_production_variants (List[ProductionVariantSummary] | None)
- endpoint_name
Name of the endpoint.
- Type:
- endpoint_arn
The Amazon Resource Name (ARN) of the endpoint.
- Type:
str | None
- endpoint_status
The status of the endpoint. OutOfService: Endpoint is not available to take incoming requests. Creating: CreateEndpoint is executing. Updating: UpdateEndpoint or UpdateEndpointWeightsAndCapacities is executing. SystemUpdating: Endpoint is undergoing maintenance and cannot be updated or deleted or re-scaled until it has completed. This maintenance operation does not change any customer-specified values such as VPC config, KMS encryption, model, instance type, or instance count. RollingBack: Endpoint fails to scale up or down or change its variant weight and is in the process of rolling back to its previous configuration. Once the rollback completes, endpoint returns to an InService status. This transitional status only applies to an endpoint that has autoscaling enabled and is undergoing variant weight or capacity changes as part of an UpdateEndpointWeightsAndCapacities call or when the UpdateEndpointWeightsAndCapacities operation is called explicitly. InService: Endpoint is available to process incoming requests. Deleting: DeleteEndpoint is executing. Failed: Endpoint could not be created, updated, or re-scaled. Use the FailureReason value returned by DescribeEndpoint for information about the failure. DeleteEndpoint is the only operation that can be performed on a failed endpoint. UpdateRollbackFailed: Both the rolling deployment and auto-rollback failed. Your endpoint is in service with a mix of the old and new endpoint configurations. For information about how to remedy this issue and restore the endpoint’s status to InService, see Rolling Deployments.
- Type:
str | None
- creation_time
A timestamp that shows when the endpoint was created.
- Type:
datetime.datetime | None
- last_modified_time
A timestamp that shows when the endpoint was last modified.
- Type:
datetime.datetime | None
- endpoint_config_name
The name of the endpoint configuration associated with this endpoint.
- Type:
str | None
- production_variants
An array of ProductionVariantSummary objects, one for each model hosted behind this endpoint.
- Type:
List[sagemaker_core.main.shapes.ProductionVariantSummary] | None
- data_capture_config
- Type:
sagemaker_core.main.shapes.DataCaptureConfigSummary | None
- failure_reason
If the status of the endpoint is Failed, the reason why it failed.
- Type:
str | None
- last_deployment_config
The most recent deployment configuration for the endpoint.
- Type:
sagemaker_core.main.shapes.DeploymentConfig | None
- async_inference_config
Returns the description of an endpoint configuration created using the CreateEndpointConfig API.
- Type:
sagemaker_core.main.shapes.AsyncInferenceConfig | None
- pending_deployment_summary
Returns the summary of an in-progress deployment. This field is only returned when the endpoint is creating or updating with a new endpoint configuration.
- Type:
sagemaker_core.main.shapes.PendingDeploymentSummary | None
- explainer_config
The configuration parameters for an explainer.
- Type:
sagemaker_core.main.shapes.ExplainerConfig | None
- shadow_production_variants
An array of ProductionVariantSummary objects, one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants.
- Type:
List[sagemaker_core.main.shapes.ProductionVariantSummary] | None
- classmethod create(endpoint_name, endpoint_config_name, deployment_config=<sagemaker_core.main.utils.Unassigned object>, tags=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Create a Endpoint resource
- Parameters:
endpoint_name (str) – The name of the endpoint.The name must be unique within an Amazon Web Services Region in your Amazon Web Services account. The name is case-insensitive in CreateEndpoint, but the case is preserved and must be matched in InvokeEndpoint.
endpoint_config_name (str | object) – The name of an endpoint configuration. For more information, see CreateEndpointConfig.
deployment_config (DeploymentConfig | None)
tags (List[Tag] | None) – An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
The Endpoint resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
ConfigSchemaValidationError – Raised when a configuration file does not adhere to the schema
LocalConfigNotFoundError – Raised when a configuration file is not found in local file system
S3ConfigNotFoundError – Raised when a configuration file is not found in S3
- Return type:
Endpoint | None
- delete()[source]
Delete a Endpoint resource
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
None
- classmethod get(endpoint_name, session=None, region=None)[source]
Get a Endpoint resource
- Parameters:
- Returns:
The Endpoint resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
Endpoint | None
- classmethod get_all(sort_by=<sagemaker_core.main.utils.Unassigned object>, sort_order=<sagemaker_core.main.utils.Unassigned object>, name_contains=<sagemaker_core.main.utils.Unassigned object>, creation_time_before=<sagemaker_core.main.utils.Unassigned object>, creation_time_after=<sagemaker_core.main.utils.Unassigned object>, last_modified_time_before=<sagemaker_core.main.utils.Unassigned object>, last_modified_time_after=<sagemaker_core.main.utils.Unassigned object>, status_equals=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Get all Endpoint resources
- Parameters:
sort_by (str | None) – Sorts the list of results. The default is CreationTime.
sort_order (str | None) – The sort order for results. The default is Descending.
next_token – If the result of a ListEndpoints request was truncated, the response includes a NextToken. To retrieve the next set of endpoints, use the token in the next request.
max_results – The maximum number of endpoints to return in the response. This value defaults to 10.
name_contains (str | None) – A string in endpoint names. This filter returns only endpoints whose name contains the specified string.
creation_time_before (datetime | None) – A filter that returns only endpoints that were created before the specified time (timestamp).
creation_time_after (datetime | None) – A filter that returns only endpoints with a creation time greater than or equal to the specified time (timestamp).
last_modified_time_before (datetime | None) – A filter that returns only endpoints that were modified before the specified timestamp.
last_modified_time_after (datetime | None) – A filter that returns only endpoints that were modified after the specified timestamp.
status_equals (str | None) – A filter that returns only endpoints with the specified status.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
Iterator for listed Endpoint resources.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
ResourceIterator[Endpoint]
- invoke(body, content_type=<sagemaker_core.main.utils.Unassigned object>, accept=<sagemaker_core.main.utils.Unassigned object>, custom_attributes=<sagemaker_core.main.utils.Unassigned object>, target_model=<sagemaker_core.main.utils.Unassigned object>, target_variant=<sagemaker_core.main.utils.Unassigned object>, target_container_hostname=<sagemaker_core.main.utils.Unassigned object>, inference_id=<sagemaker_core.main.utils.Unassigned object>, enable_explanations=<sagemaker_core.main.utils.Unassigned object>, inference_component_name=<sagemaker_core.main.utils.Unassigned object>, session_id=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
After you deploy a model into production using Amazon SageMaker hosting services, your client applications use this API to get inferences from the model hosted at the specified endpoint.
- Parameters:
body (Any) – Provides input data, in the format specified in the ContentType request header. Amazon SageMaker passes all of the data in the body to the model. For information about the format of the request body, see Common Data Formats-Inference.
content_type (str | None) – The MIME type of the input data in the request body.
accept (str | None) – The desired MIME type of the inference response from the model container.
custom_attributes (str | None) – Provides additional information about a request for an inference submitted to a model hosted at an Amazon SageMaker endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to provide an ID that you can use to track a request or to provide other metadata that a service endpoint was programmed to process. The value must consist of no more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field Value Components of the Hypertext Transfer Protocol (HTTP/1.1). The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with Trace ID: in your post-processing function. This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker Python SDK.
target_model (str | None) – The model to request for inference when invoking a multi-model endpoint.
target_variant (str | None) – Specify the production variant to send the inference request to when invoking an endpoint that is running two or more variants. Note that this parameter overrides the default behavior for the endpoint, which is to distribute the invocation traffic based on the variant weights. For information about how to use variant targeting to perform a/b testing, see Test models in production
target_container_hostname (str | None) – If the endpoint hosts multiple containers and is configured to use direct invocation, this parameter specifies the host name of the container to invoke.
inference_id (str | None) – If you provide a value, it is added to the captured data when you enable data capture on the endpoint. For information about data capture, see Capture Data.
enable_explanations (str | None) – An optional JMESPath expression used to override the EnableExplanations parameter of the ClarifyExplainerConfig API. See the EnableExplanations section in the developer guide for more information.
inference_component_name (str | None) – If the endpoint hosts one or more inference components, this parameter specifies the name of inference component to invoke.
session_id (str | None) – Creates a stateful session or identifies an existing one. You can do one of the following: Create a stateful session by specifying the value NEW_SESSION. Send your request to an existing stateful session by specifying the ID of that session. With a stateful session, you can send multiple requests to a stateful model. When you create a session with a stateful model, the model must create the session ID and set the expiration time. The model must also provide that information in the response to your request. You can get the ID and timestamp from the NewSessionId response parameter. For any subsequent request where you specify that session ID, SageMaker routes the request to the same instance that supports the session.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
InvokeEndpointOutput
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
InternalDependencyException – Your request caused an exception with an internal dependency. Contact customer support.
InternalFailure – An internal failure occurred. Try your request again. If the problem persists, contact Amazon Web Services customer support.
ModelError – Model (owned by the customer in the container) returned 4xx or 5xx error code.
ModelNotReadyException – Either a serverless endpoint variant’s resources are still being provisioned, or a multi-model endpoint is still downloading or loading the target model. Wait and try your request again.
ServiceUnavailable – The service is currently unavailable.
ValidationError – There was an error validating your request.
- Return type:
InvokeEndpointOutput | None
- invoke_async(input_location, content_type=<sagemaker_core.main.utils.Unassigned object>, accept=<sagemaker_core.main.utils.Unassigned object>, custom_attributes=<sagemaker_core.main.utils.Unassigned object>, inference_id=<sagemaker_core.main.utils.Unassigned object>, request_ttl_seconds=<sagemaker_core.main.utils.Unassigned object>, invocation_timeout_seconds=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
After you deploy a model into production using Amazon SageMaker hosting services, your client applications use this API to get inferences from the model hosted at the specified endpoint in an asynchronous manner.
- Parameters:
input_location (str) – The Amazon S3 URI where the inference request payload is stored.
content_type (str | None) – The MIME type of the input data in the request body.
accept (str | None) – The desired MIME type of the inference response from the model container.
custom_attributes (str | None) – Provides additional information about a request for an inference submitted to a model hosted at an Amazon SageMaker endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to provide an ID that you can use to track a request or to provide other metadata that a service endpoint was programmed to process. The value must consist of no more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field Value Components of the Hypertext Transfer Protocol (HTTP/1.1). The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with Trace ID: in your post-processing function. This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker Python SDK.
inference_id (str | None) – The identifier for the inference request. Amazon SageMaker will generate an identifier for you if none is specified.
request_ttl_seconds (int | None) – Maximum age in seconds a request can be in the queue before it is marked as expired. The default is 6 hours, or 21,600 seconds.
invocation_timeout_seconds (int | None) – Maximum amount of time in seconds a request can be processed before it is marked as expired. The default is 15 minutes, or 900 seconds.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
InvokeEndpointAsyncOutput
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
InternalFailure – An internal failure occurred. Try your request again. If the problem persists, contact Amazon Web Services customer support.
ServiceUnavailable – The service is currently unavailable.
ValidationError – There was an error validating your request.
- Return type:
InvokeEndpointAsyncOutput | None
- invoke_with_response_stream(body, content_type=<sagemaker_core.main.utils.Unassigned object>, accept=<sagemaker_core.main.utils.Unassigned object>, custom_attributes=<sagemaker_core.main.utils.Unassigned object>, target_variant=<sagemaker_core.main.utils.Unassigned object>, target_container_hostname=<sagemaker_core.main.utils.Unassigned object>, inference_id=<sagemaker_core.main.utils.Unassigned object>, inference_component_name=<sagemaker_core.main.utils.Unassigned object>, session_id=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Invokes a model at the specified endpoint to return the inference response as a stream.
- Parameters:
body (Any) – Provides input data, in the format specified in the ContentType request header. Amazon SageMaker passes all of the data in the body to the model. For information about the format of the request body, see Common Data Formats-Inference.
content_type (str | None) – The MIME type of the input data in the request body.
accept (str | None) – The desired MIME type of the inference response from the model container.
custom_attributes (str | None) – Provides additional information about a request for an inference submitted to a model hosted at an Amazon SageMaker endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to provide an ID that you can use to track a request or to provide other metadata that a service endpoint was programmed to process. The value must consist of no more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field Value Components of the Hypertext Transfer Protocol (HTTP/1.1). The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with Trace ID: in your post-processing function. This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker Python SDK.
target_variant (str | None) – Specify the production variant to send the inference request to when invoking an endpoint that is running two or more variants. Note that this parameter overrides the default behavior for the endpoint, which is to distribute the invocation traffic based on the variant weights. For information about how to use variant targeting to perform a/b testing, see Test models in production
target_container_hostname (str | None) – If the endpoint hosts multiple containers and is configured to use direct invocation, this parameter specifies the host name of the container to invoke.
inference_id (str | None) – An identifier that you assign to your request.
inference_component_name (str | None) – If the endpoint hosts one or more inference components, this parameter specifies the name of inference component to invoke for a streaming response.
session_id (str | None) – The ID of a stateful session to handle your request. You can’t create a stateful session by using the InvokeEndpointWithResponseStream action. Instead, you can create one by using the InvokeEndpoint action. In your request, you specify NEW_SESSION for the SessionId request parameter. The response to that request provides the session ID for the NewSessionId response parameter.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
InvokeEndpointWithResponseStreamOutput
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
InternalFailure – An internal failure occurred. Try your request again. If the problem persists, contact Amazon Web Services customer support.
InternalStreamFailure – The stream processing failed because of an unknown error, exception or failure. Try your request again.
ModelError – Model (owned by the customer in the container) returned 4xx or 5xx error code.
ModelStreamError – An error occurred while streaming the response body. This error can have the following error codes: ModelInvocationTimeExceeded The model failed to finish sending the response within the timeout period allowed by Amazon SageMaker. StreamBroken The Transmission Control Protocol (TCP) connection between the client and the model was reset or closed.
ServiceUnavailable – The service is currently unavailable.
ValidationError – There was an error validating your request.
- Return type:
InvokeEndpointWithResponseStreamOutput | None
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'protected_namespaces': (), 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- refresh()[source]
Refresh a Endpoint resource
- Returns:
The Endpoint resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
Endpoint | None
- update(retain_all_variant_properties=<sagemaker_core.main.utils.Unassigned object>, exclude_retained_variant_properties=<sagemaker_core.main.utils.Unassigned object>, deployment_config=<sagemaker_core.main.utils.Unassigned object>, retain_deployment_config=<sagemaker_core.main.utils.Unassigned object>)[source]
Update a Endpoint resource
- Parameters:
retain_all_variant_properties (bool | None) – When updating endpoint resources, enables or disables the retention of variant properties, such as the instance count or the variant weight. To retain the variant properties of an endpoint when updating it, set RetainAllVariantProperties to true. To use the variant properties specified in a new EndpointConfig call when updating an endpoint, set RetainAllVariantProperties to false. The default is false.
exclude_retained_variant_properties (List[VariantProperty] | None) – When you are updating endpoint resources with RetainAllVariantProperties, whose value is set to true, ExcludeRetainedVariantProperties specifies the list of type VariantProperty to override with the values provided by EndpointConfig. If you don’t specify a value for ExcludeRetainedVariantProperties, no variant properties are overridden.
deployment_config (DeploymentConfig | None) – The deployment configuration for an endpoint, which contains the desired deployment strategy and rollback configurations.
retain_deployment_config (bool | None) – Specifies whether to reuse the last deployment configuration. The default value is false (the configuration is not reused).
- Returns:
The Endpoint resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
- Return type:
Endpoint | None
- update_weights_and_capacities(desired_weights_and_capacities, session=None, region=None)[source]
Updates variant weight of one or more variants associated with an existing endpoint, or capacity of one variant associated with an existing endpoint.
- Parameters:
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
- Return type:
None
- wait_for_delete(poll=5, timeout=None)[source]
Wait for a Endpoint resource to be deleted.
- Parameters:
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
TimeoutExceededError – If the resource does not reach a terminal state before the timeout.
DeleteFailedStatusError – If the resource reaches a failed state.
WaiterError – Raised when an error occurs while waiting.
- Return type:
None
- wait_for_status(target_status, poll=5, timeout=None)[source]
Wait for a Endpoint resource to reach certain status.
- Parameters:
target_status (Literal['OutOfService', 'Creating', 'Updating', 'SystemUpdating', 'RollingBack', 'InService', 'Deleting', 'Failed', 'UpdateRollbackFailed']) – The status to wait for.
poll (int) – The number of seconds to wait between each poll.
timeout (int | None) – The maximum number of seconds to wait before timing out.
- Raises:
TimeoutExceededError – If the resource does not reach a terminal state before the timeout.
FailedStatusError – If the resource reaches a failed state.
WaiterError – Raised when an error occurs while waiting.
- Return type:
None
- class sagemaker_core.main.resources.EndpointConfig(*, endpoint_config_name, endpoint_config_arn=<sagemaker_core.main.utils.Unassigned object>, production_variants=<sagemaker_core.main.utils.Unassigned object>, data_capture_config=<sagemaker_core.main.utils.Unassigned object>, kms_key_id=<sagemaker_core.main.utils.Unassigned object>, creation_time=<sagemaker_core.main.utils.Unassigned object>, async_inference_config=<sagemaker_core.main.utils.Unassigned object>, explainer_config=<sagemaker_core.main.utils.Unassigned object>, shadow_production_variants=<sagemaker_core.main.utils.Unassigned object>, execution_role_arn=<sagemaker_core.main.utils.Unassigned object>, vpc_config=<sagemaker_core.main.utils.Unassigned object>, enable_network_isolation=<sagemaker_core.main.utils.Unassigned object>)[source]
Class representing resource EndpointConfig
- Parameters:
endpoint_config_name (str)
endpoint_config_arn (str | None)
production_variants (List[ProductionVariant] | None)
data_capture_config (DataCaptureConfig | None)
kms_key_id (str | None)
creation_time (datetime | None)
async_inference_config (AsyncInferenceConfig | None)
explainer_config (ExplainerConfig | None)
shadow_production_variants (List[ProductionVariant] | None)
execution_role_arn (str | None)
vpc_config (VpcConfig | None)
enable_network_isolation (bool | None)
- endpoint_config_name
Name of the SageMaker endpoint configuration.
- Type:
- endpoint_config_arn
The Amazon Resource Name (ARN) of the endpoint configuration.
- Type:
str | None
- production_variants
An array of ProductionVariant objects, one for each model that you want to host at this endpoint.
- Type:
List[sagemaker_core.main.shapes.ProductionVariant] | None
- creation_time
A timestamp that shows when the endpoint configuration was created.
- Type:
datetime.datetime | None
- data_capture_config
- Type:
sagemaker_core.main.shapes.DataCaptureConfig | None
- kms_key_id
Amazon Web Services KMS key ID Amazon SageMaker uses to encrypt data when storing it on the ML storage volume attached to the instance.
- Type:
str | None
- async_inference_config
Returns the description of an endpoint configuration created using the CreateEndpointConfig API.
- Type:
sagemaker_core.main.shapes.AsyncInferenceConfig | None
- explainer_config
The configuration parameters for an explainer.
- Type:
sagemaker_core.main.shapes.ExplainerConfig | None
- shadow_production_variants
An array of ProductionVariant objects, one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants.
- Type:
List[sagemaker_core.main.shapes.ProductionVariant] | None
- execution_role_arn
The Amazon Resource Name (ARN) of the IAM role that you assigned to the endpoint configuration.
- Type:
str | None
- vpc_config
- Type:
sagemaker_core.main.shapes.VpcConfig | None
- enable_network_isolation
Indicates whether all model containers deployed to the endpoint are isolated. If they are, no inbound or outbound network calls can be made to or from the model containers.
- Type:
bool | None
- classmethod create(endpoint_config_name, production_variants, data_capture_config=<sagemaker_core.main.utils.Unassigned object>, tags=<sagemaker_core.main.utils.Unassigned object>, kms_key_id=<sagemaker_core.main.utils.Unassigned object>, async_inference_config=<sagemaker_core.main.utils.Unassigned object>, explainer_config=<sagemaker_core.main.utils.Unassigned object>, shadow_production_variants=<sagemaker_core.main.utils.Unassigned object>, execution_role_arn=<sagemaker_core.main.utils.Unassigned object>, vpc_config=<sagemaker_core.main.utils.Unassigned object>, enable_network_isolation=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Create a EndpointConfig resource
- Parameters:
endpoint_config_name (str) – The name of the endpoint configuration. You specify this name in a CreateEndpoint request.
production_variants (List[ProductionVariant]) – An array of ProductionVariant objects, one for each model that you want to host at this endpoint.
data_capture_config (DataCaptureConfig | None)
tags (List[Tag] | None) – An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
kms_key_id (str | None) – The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. The KmsKeyId can be any of the following formats: Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab Alias name: alias/ExampleAlias Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint, UpdateEndpoint requests. For more information, refer to the Amazon Web Services Key Management Service section Using Key Policies in Amazon Web Services KMS Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can’t request a KmsKeyId when using an instance type with local storage. If any of the models that you specify in the ProductionVariants parameter use nitro-based instances with local storage, do not specify a value for the KmsKeyId parameter. If you specify a value for KmsKeyId when using any nitro-based instances with local storage, the call to CreateEndpointConfig fails. For a list of instance types that support local instance storage, see Instance Store Volumes. For more information about local instance storage encryption, see SSD Instance Store Volumes.
async_inference_config (AsyncInferenceConfig | None) – Specifies configuration for how an endpoint performs asynchronous inference. This is a required field in order for your Endpoint to be invoked using InvokeEndpointAsync.
explainer_config (ExplainerConfig | None) – A member of CreateEndpointConfig that enables explainers.
shadow_production_variants (List[ProductionVariant] | None) – An array of ProductionVariant objects, one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants. If you use this field, you can only specify one variant for ProductionVariants and one variant for ShadowProductionVariants.
execution_role_arn (str | None) – The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform actions on your behalf. For more information, see SageMaker Roles. To be able to pass this role to Amazon SageMaker, the caller of this action must have the iam:PassRole permission.
vpc_config (VpcConfig | None)
enable_network_isolation (bool | None) – Sets whether all model containers deployed to the endpoint are isolated. If they are, no inbound or outbound network calls can be made to or from the model containers.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
The EndpointConfig resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
ConfigSchemaValidationError – Raised when a configuration file does not adhere to the schema
LocalConfigNotFoundError – Raised when a configuration file is not found in local file system
S3ConfigNotFoundError – Raised when a configuration file is not found in S3
- Return type:
EndpointConfig | None
- delete()[source]
Delete a EndpointConfig resource
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
None
- classmethod get(endpoint_config_name, session=None, region=None)[source]
Get a EndpointConfig resource
- Parameters:
- Returns:
The EndpointConfig resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
EndpointConfig | None
- classmethod get_all(sort_by=<sagemaker_core.main.utils.Unassigned object>, sort_order=<sagemaker_core.main.utils.Unassigned object>, name_contains=<sagemaker_core.main.utils.Unassigned object>, creation_time_before=<sagemaker_core.main.utils.Unassigned object>, creation_time_after=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Get all EndpointConfig resources
- Parameters:
sort_by (str | None) – The field to sort results by. The default is CreationTime.
sort_order (str | None) – The sort order for results. The default is Descending.
next_token – If the result of the previous ListEndpointConfig request was truncated, the response includes a NextToken. To retrieve the next set of endpoint configurations, use the token in the next request.
max_results – The maximum number of training jobs to return in the response.
name_contains (str | None) – A string in the endpoint configuration name. This filter returns only endpoint configurations whose name contains the specified string.
creation_time_before (datetime | None) – A filter that returns only endpoint configurations created before the specified time (timestamp).
creation_time_after (datetime | None) – A filter that returns only endpoint configurations with a creation time greater than or equal to the specified time (timestamp).
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
Iterator for listed EndpointConfig resources.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
ResourceIterator[EndpointConfig]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'protected_namespaces': (), 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- refresh()[source]
Refresh a EndpointConfig resource
- Returns:
The EndpointConfig resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
EndpointConfig | None
- class sagemaker_core.main.resources.Experiment(*, experiment_name, experiment_arn=<sagemaker_core.main.utils.Unassigned object>, display_name=<sagemaker_core.main.utils.Unassigned object>, source=<sagemaker_core.main.utils.Unassigned object>, description=<sagemaker_core.main.utils.Unassigned object>, creation_time=<sagemaker_core.main.utils.Unassigned object>, created_by=<sagemaker_core.main.utils.Unassigned object>, last_modified_time=<sagemaker_core.main.utils.Unassigned object>, last_modified_by=<sagemaker_core.main.utils.Unassigned object>)[source]
Class representing resource Experiment
- Parameters:
- experiment_name
The name of the experiment.
- Type:
- experiment_arn
The Amazon Resource Name (ARN) of the experiment.
- Type:
str | None
- display_name
The name of the experiment as displayed. If DisplayName isn’t specified, ExperimentName is displayed.
- Type:
str | None
- source
The Amazon Resource Name (ARN) of the source and, optionally, the type.
- Type:
sagemaker_core.main.shapes.ExperimentSource | None
- description
The description of the experiment.
- Type:
str | None
- creation_time
When the experiment was created.
- Type:
datetime.datetime | None
- created_by
Who created the experiment.
- Type:
sagemaker_core.main.shapes.UserContext | None
- last_modified_time
When the experiment was last modified.
- Type:
datetime.datetime | None
- last_modified_by
Who last modified the experiment.
- Type:
sagemaker_core.main.shapes.UserContext | None
- classmethod create(experiment_name, display_name=<sagemaker_core.main.utils.Unassigned object>, description=<sagemaker_core.main.utils.Unassigned object>, tags=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Create a Experiment resource
- Parameters:
experiment_name (str) – The name of the experiment. The name must be unique in your Amazon Web Services account and is not case-sensitive.
display_name (str | None) – The name of the experiment as displayed. The name doesn’t need to be unique. If you don’t specify DisplayName, the value in ExperimentName is displayed.
description (str | None) – The description of the experiment.
tags (List[Tag] | None) – A list of tags to associate with the experiment. You can use Search API to search on the tags.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
The Experiment resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
ConfigSchemaValidationError – Raised when a configuration file does not adhere to the schema
LocalConfigNotFoundError – Raised when a configuration file is not found in local file system
S3ConfigNotFoundError – Raised when a configuration file is not found in S3
- Return type:
Experiment | None
- delete()[source]
Delete a Experiment resource
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
None
- classmethod get(experiment_name, session=None, region=None)[source]
Get a Experiment resource
- Parameters:
- Returns:
The Experiment resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
Experiment | None
- classmethod get_all(created_after=<sagemaker_core.main.utils.Unassigned object>, created_before=<sagemaker_core.main.utils.Unassigned object>, sort_by=<sagemaker_core.main.utils.Unassigned object>, sort_order=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Get all Experiment resources
- Parameters:
created_after (datetime | None) – A filter that returns only experiments created after the specified time.
created_before (datetime | None) – A filter that returns only experiments created before the specified time.
sort_by (str | None) – The property used to sort results. The default value is CreationTime.
sort_order (str | None) – The sort order. The default value is Descending.
next_token – If the previous call to ListExperiments didn’t return the full set of experiments, the call returns a token for getting the next set of experiments.
max_results – The maximum number of experiments to return in the response. The default value is 10.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
Iterator for listed Experiment resources.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
ResourceIterator[Experiment]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'protected_namespaces': (), 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- refresh()[source]
Refresh a Experiment resource
- Returns:
The Experiment resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
Experiment | None
- update(display_name=<sagemaker_core.main.utils.Unassigned object>, description=<sagemaker_core.main.utils.Unassigned object>)[source]
Update a Experiment resource
- Returns:
The Experiment resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ConflictException – There was a conflict when you attempted to modify a SageMaker entity such as an Experiment or Artifact.
ResourceNotFound – Resource being access is not found.
- Parameters:
- Return type:
Experiment | None
- class sagemaker_core.main.resources.FeatureGroup(*, feature_group_name, feature_group_arn=<sagemaker_core.main.utils.Unassigned object>, record_identifier_feature_name=<sagemaker_core.main.utils.Unassigned object>, event_time_feature_name=<sagemaker_core.main.utils.Unassigned object>, feature_definitions=<sagemaker_core.main.utils.Unassigned object>, creation_time=<sagemaker_core.main.utils.Unassigned object>, last_modified_time=<sagemaker_core.main.utils.Unassigned object>, online_store_config=<sagemaker_core.main.utils.Unassigned object>, offline_store_config=<sagemaker_core.main.utils.Unassigned object>, throughput_config=<sagemaker_core.main.utils.Unassigned object>, role_arn=<sagemaker_core.main.utils.Unassigned object>, feature_group_status=<sagemaker_core.main.utils.Unassigned object>, offline_store_status=<sagemaker_core.main.utils.Unassigned object>, last_update_status=<sagemaker_core.main.utils.Unassigned object>, failure_reason=<sagemaker_core.main.utils.Unassigned object>, description=<sagemaker_core.main.utils.Unassigned object>, next_token=<sagemaker_core.main.utils.Unassigned object>, online_store_total_size_bytes=<sagemaker_core.main.utils.Unassigned object>)[source]
Class representing resource FeatureGroup
- Parameters:
feature_group_name (str)
feature_group_arn (str | None)
record_identifier_feature_name (str | None)
event_time_feature_name (str | None)
feature_definitions (List[FeatureDefinition] | None)
creation_time (datetime | None)
last_modified_time (datetime | None)
online_store_config (OnlineStoreConfig | None)
offline_store_config (OfflineStoreConfig | None)
throughput_config (ThroughputConfigDescription | None)
role_arn (str | None)
feature_group_status (str | None)
offline_store_status (OfflineStoreStatus | None)
last_update_status (LastUpdateStatus | None)
failure_reason (str | None)
description (str | None)
next_token (str | None)
online_store_total_size_bytes (int | None)
- feature_group_arn
The Amazon Resource Name (ARN) of the FeatureGroup.
- Type:
str | None
- feature_group_name
he name of the FeatureGroup.
- Type:
- record_identifier_feature_name
The name of the Feature used for RecordIdentifier, whose value uniquely identifies a record stored in the feature store.
- Type:
str | None
- event_time_feature_name
The name of the feature that stores the EventTime of a Record in a FeatureGroup. An EventTime is a point in time when a new event occurs that corresponds to the creation or update of a Record in a FeatureGroup. All Records in the FeatureGroup have a corresponding EventTime.
- Type:
str | None
- feature_definitions
A list of the Features in the FeatureGroup. Each feature is defined by a FeatureName and FeatureType.
- Type:
List[sagemaker_core.main.shapes.FeatureDefinition] | None
- creation_time
A timestamp indicating when SageMaker created the FeatureGroup.
- Type:
datetime.datetime | None
- next_token
A token to resume pagination of the list of Features (FeatureDefinitions).
- Type:
str | None
- last_modified_time
A timestamp indicating when the feature group was last updated.
- Type:
datetime.datetime | None
- online_store_config
The configuration for the OnlineStore.
- Type:
sagemaker_core.main.shapes.OnlineStoreConfig | None
- offline_store_config
The configuration of the offline store. It includes the following configurations: Amazon S3 location of the offline store. Configuration of the Glue data catalog. Table format of the offline store. Option to disable the automatic creation of a Glue table for the offline store. Encryption configuration.
- Type:
sagemaker_core.main.shapes.OfflineStoreConfig | None
- throughput_config
- Type:
sagemaker_core.main.shapes.ThroughputConfigDescription | None
- role_arn
The Amazon Resource Name (ARN) of the IAM execution role used to persist data into the OfflineStore if an OfflineStoreConfig is provided.
- Type:
str | None
- feature_group_status
The status of the feature group.
- Type:
str | None
- offline_store_status
The status of the OfflineStore. Notifies you if replicating data into the OfflineStore has failed. Returns either: Active or Blocked
- Type:
sagemaker_core.main.shapes.OfflineStoreStatus | None
- last_update_status
A value indicating whether the update made to the feature group was successful.
- Type:
sagemaker_core.main.shapes.LastUpdateStatus | None
- failure_reason
The reason that the FeatureGroup failed to be replicated in the OfflineStore. This is failure can occur because: The FeatureGroup could not be created in the OfflineStore. The FeatureGroup could not be deleted from the OfflineStore.
- Type:
str | None
- description
A free form description of the feature group.
- Type:
str | None
- online_store_total_size_bytes
The size of the OnlineStore in bytes.
- Type:
int | None
- batch_get_record(identifiers, expiration_time_response=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Retrieves a batch of Records from a FeatureGroup.
- Parameters:
identifiers (List[BatchGetRecordIdentifier]) – A list containing the name or Amazon Resource Name (ARN) of the FeatureGroup, the list of names of Features to be retrieved, and the corresponding RecordIdentifier values as strings.
expiration_time_response (str | None) – Parameter to request ExpiresAt in response. If Enabled, BatchGetRecord will return the value of ExpiresAt, if it is not null. If Disabled and null, BatchGetRecord will return null.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
BatchGetRecordResponse
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
AccessForbidden – You do not have permission to perform an action.
InternalFailure – An internal failure occurred. Try your request again. If the problem persists, contact Amazon Web Services customer support.
ServiceUnavailable – The service is currently unavailable.
ValidationError – There was an error validating your request.
- Return type:
BatchGetRecordResponse | None
- classmethod create(feature_group_name, record_identifier_feature_name, event_time_feature_name, feature_definitions, online_store_config=<sagemaker_core.main.utils.Unassigned object>, offline_store_config=<sagemaker_core.main.utils.Unassigned object>, throughput_config=<sagemaker_core.main.utils.Unassigned object>, role_arn=<sagemaker_core.main.utils.Unassigned object>, description=<sagemaker_core.main.utils.Unassigned object>, tags=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Create a FeatureGroup resource
- Parameters:
feature_group_name (str) – The name of the FeatureGroup. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account. The name: Must start with an alphanumeric character. Can only include alphanumeric characters, underscores, and hyphens. Spaces are not allowed.
record_identifier_feature_name (str) – The name of the Feature whose value uniquely identifies a Record defined in the FeatureStore. Only the latest record per identifier value will be stored in the OnlineStore. RecordIdentifierFeatureName must be one of feature definitions’ names. You use the RecordIdentifierFeatureName to access data in a FeatureStore. This name: Must start with an alphanumeric character. Can only contains alphanumeric characters, hyphens, underscores. Spaces are not allowed.
event_time_feature_name (str) – The name of the feature that stores the EventTime of a Record in a FeatureGroup. An EventTime is a point in time when a new event occurs that corresponds to the creation or update of a Record in a FeatureGroup. All Records in the FeatureGroup must have a corresponding EventTime. An EventTime can be a String or Fractional. Fractional: EventTime feature values must be a Unix timestamp in seconds. String: EventTime feature values must be an ISO-8601 string in the format. The following formats are supported yyyy-MM-dd’T’HH:mm:ssZ and yyyy-MM-dd’T’HH:mm:ss.SSSZ where yyyy, MM, and dd represent the year, month, and day respectively and HH, mm, ss, and if applicable, SSS represent the hour, month, second and milliseconds respsectively. ‘T’ and Z are constants.
feature_definitions (List[FeatureDefinition]) – A list of Feature names and types. Name and Type is compulsory per Feature. Valid feature FeatureTypes are Integral, Fractional and String. FeatureNames cannot be any of the following: is_deleted, write_time, api_invocation_time You can create up to 2,500 FeatureDefinitions per FeatureGroup.
online_store_config (OnlineStoreConfig | None) – You can turn the OnlineStore on or off by specifying True for the EnableOnlineStore flag in OnlineStoreConfig. You can also include an Amazon Web Services KMS key ID (KMSKeyId) for at-rest encryption of the OnlineStore. The default value is False.
offline_store_config (OfflineStoreConfig | None) – Use this to configure an OfflineFeatureStore. This parameter allows you to specify: The Amazon Simple Storage Service (Amazon S3) location of an OfflineStore. A configuration for an Amazon Web Services Glue or Amazon Web Services Hive data catalog. An KMS encryption key to encrypt the Amazon S3 location used for OfflineStore. If KMS encryption key is not specified, by default we encrypt all data at rest using Amazon Web Services KMS key. By defining your bucket-level key for SSE, you can reduce Amazon Web Services KMS requests costs by up to 99 percent. Format for the offline store table. Supported formats are Glue (Default) and Apache Iceberg. To learn more about this parameter, see OfflineStoreConfig.
throughput_config (ThroughputConfig | None)
role_arn (str | None) – The Amazon Resource Name (ARN) of the IAM execution role used to persist data into the OfflineStore if an OfflineStoreConfig is provided.
description (str | None) – A free-form description of a FeatureGroup.
tags (List[Tag] | None) – Tags used to identify Features in each FeatureGroup.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
The FeatureGroup resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceInUse – Resource being accessed is in use.
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
ConfigSchemaValidationError – Raised when a configuration file does not adhere to the schema
LocalConfigNotFoundError – Raised when a configuration file is not found in local file system
S3ConfigNotFoundError – Raised when a configuration file is not found in S3
- Return type:
FeatureGroup | None
- delete()[source]
Delete a FeatureGroup resource
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
None
- delete_record(record_identifier_value_as_string, event_time, target_stores=<sagemaker_core.main.utils.Unassigned object>, deletion_mode=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Deletes a Record from a FeatureGroup in the OnlineStore.
- Parameters:
record_identifier_value_as_string (str) – The value for the RecordIdentifier that uniquely identifies the record, in string format.
event_time (str) – Timestamp indicating when the deletion event occurred. EventTime can be used to query data at a certain point in time.
target_stores (List[str] | None) – A list of stores from which you’re deleting the record. By default, Feature Store deletes the record from all of the stores that you’re using for the FeatureGroup.
deletion_mode (str | None) – The name of the deletion mode for deleting the record. By default, the deletion mode is set to SoftDelete.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
AccessForbidden – You do not have permission to perform an action.
InternalFailure – An internal failure occurred. Try your request again. If the problem persists, contact Amazon Web Services customer support.
ServiceUnavailable – The service is currently unavailable.
ValidationError – There was an error validating your request.
- Return type:
None
- classmethod get(feature_group_name, next_token=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Get a FeatureGroup resource
- Parameters:
feature_group_name (str) – The name or Amazon Resource Name (ARN) of the FeatureGroup you want described.
next_token (str | None) – A token to resume pagination of the list of Features (FeatureDefinitions). 2,500 Features are returned by default.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
The FeatureGroup resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
FeatureGroup | None
- classmethod get_all(name_contains=<sagemaker_core.main.utils.Unassigned object>, feature_group_status_equals=<sagemaker_core.main.utils.Unassigned object>, offline_store_status_equals=<sagemaker_core.main.utils.Unassigned object>, creation_time_after=<sagemaker_core.main.utils.Unassigned object>, creation_time_before=<sagemaker_core.main.utils.Unassigned object>, sort_order=<sagemaker_core.main.utils.Unassigned object>, sort_by=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Get all FeatureGroup resources
- Parameters:
name_contains (str | None) – A string that partially matches one or more FeatureGroups names. Filters FeatureGroups by name.
feature_group_status_equals (str | None) – A FeatureGroup status. Filters by FeatureGroup status.
offline_store_status_equals (str | None) – An OfflineStore status. Filters by OfflineStore status.
creation_time_after (datetime | None) – Use this parameter to search for FeatureGroupss created after a specific date and time.
creation_time_before (datetime | None) – Use this parameter to search for FeatureGroupss created before a specific date and time.
sort_order (str | None) – The order in which feature groups are listed.
sort_by (str | None) – The value on which the feature group list is sorted.
max_results – The maximum number of results returned by ListFeatureGroups.
next_token – A token to resume pagination of ListFeatureGroups results.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
Iterator for listed FeatureGroup resources.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
ResourceIterator[FeatureGroup]
- get_record(record_identifier_value_as_string, feature_names=<sagemaker_core.main.utils.Unassigned object>, expiration_time_response=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Use for OnlineStore serving from a FeatureStore.
- Parameters:
record_identifier_value_as_string (str) – The value that corresponds to RecordIdentifier type and uniquely identifies the record in the FeatureGroup.
feature_names (List[str] | None) – List of names of Features to be retrieved. If not specified, the latest value for all the Features are returned.
expiration_time_response (str | None) – Parameter to request ExpiresAt in response. If Enabled, GetRecord will return the value of ExpiresAt, if it is not null. If Disabled and null, GetRecord will return null.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
GetRecordResponse
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
AccessForbidden – You do not have permission to perform an action.
InternalFailure – An internal failure occurred. Try your request again. If the problem persists, contact Amazon Web Services customer support.
ResourceNotFound – Resource being access is not found.
ServiceUnavailable – The service is currently unavailable.
ValidationError – There was an error validating your request.
- Return type:
GetRecordResponse | None
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'protected_namespaces': (), 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- put_record(record, target_stores=<sagemaker_core.main.utils.Unassigned object>, ttl_duration=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
The PutRecord API is used to ingest a list of Records into your feature group.
- Parameters:
record (List[FeatureValue]) – List of FeatureValues to be inserted. This will be a full over-write. If you only want to update few of the feature values, do the following: Use GetRecord to retrieve the latest record. Update the record returned from GetRecord. Use PutRecord to update feature values.
target_stores (List[str] | None) – A list of stores to which you’re adding the record. By default, Feature Store adds the record to all of the stores that you’re using for the FeatureGroup.
ttl_duration (TtlDuration | None) – Time to live duration, where the record is hard deleted after the expiration time is reached; ExpiresAt = EventTime + TtlDuration. For information on HardDelete, see the DeleteRecord API in the Amazon SageMaker API Reference guide.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
AccessForbidden – You do not have permission to perform an action.
InternalFailure – An internal failure occurred. Try your request again. If the problem persists, contact Amazon Web Services customer support.
ServiceUnavailable – The service is currently unavailable.
ValidationError – There was an error validating your request.
- Return type:
None
- refresh()[source]
Refresh a FeatureGroup resource
- Returns:
The FeatureGroup resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
FeatureGroup | None
- update(feature_additions=<sagemaker_core.main.utils.Unassigned object>, online_store_config=<sagemaker_core.main.utils.Unassigned object>, throughput_config=<sagemaker_core.main.utils.Unassigned object>)[source]
Update a FeatureGroup resource
- Parameters:
feature_additions (List[FeatureDefinition] | None) – Updates the feature group. Updating a feature group is an asynchronous operation. When you get an HTTP 200 response, you’ve made a valid request. It takes some time after you’ve made a valid request for Feature Store to update the feature group.
online_store_config (OnlineStoreConfigUpdate | None)
throughput_config (ThroughputConfigUpdate | None)
- Returns:
The FeatureGroup resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
ResourceNotFound – Resource being access is not found.
- Return type:
FeatureGroup | None
- wait_for_delete(poll=5, timeout=None)[source]
Wait for a FeatureGroup resource to be deleted.
- Parameters:
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
TimeoutExceededError – If the resource does not reach a terminal state before the timeout.
DeleteFailedStatusError – If the resource reaches a failed state.
WaiterError – Raised when an error occurs while waiting.
- Return type:
None
- wait_for_status(target_status, poll=5, timeout=None)[source]
Wait for a FeatureGroup resource to reach certain status.
- Parameters:
- Raises:
TimeoutExceededError – If the resource does not reach a terminal state before the timeout.
FailedStatusError – If the resource reaches a failed state.
WaiterError – Raised when an error occurs while waiting.
- Return type:
None
- class sagemaker_core.main.resources.FeatureMetadata(*, feature_group_name, feature_name, feature_group_arn=<sagemaker_core.main.utils.Unassigned object>, feature_type=<sagemaker_core.main.utils.Unassigned object>, creation_time=<sagemaker_core.main.utils.Unassigned object>, last_modified_time=<sagemaker_core.main.utils.Unassigned object>, description=<sagemaker_core.main.utils.Unassigned object>, parameters=<sagemaker_core.main.utils.Unassigned object>)[source]
Class representing resource FeatureMetadata
- Parameters:
- feature_group_arn
The Amazon Resource Number (ARN) of the feature group that contains the feature.
- Type:
str | None
- feature_group_name
The name of the feature group that you’ve specified.
- Type:
- feature_name
The name of the feature that you’ve specified.
- Type:
- feature_type
The data type of the feature.
- Type:
str | None
- creation_time
A timestamp indicating when the feature was created.
- Type:
datetime.datetime | None
- last_modified_time
A timestamp indicating when the metadata for the feature group was modified. For example, if you add a parameter describing the feature, the timestamp changes to reflect the last time you
- Type:
datetime.datetime | None
- description
The description you added to describe the feature.
- Type:
str | None
- parameters
The key-value pairs that you added to describe the feature.
- Type:
List[sagemaker_core.main.shapes.FeatureParameter] | None
- classmethod get(feature_group_name, feature_name, session=None, region=None)[source]
Get a FeatureMetadata resource
- Parameters:
- Returns:
The FeatureMetadata resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
FeatureMetadata | None
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'protected_namespaces': (), 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- refresh()[source]
Refresh a FeatureMetadata resource
- Returns:
The FeatureMetadata resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
FeatureMetadata | None
- update(description=<sagemaker_core.main.utils.Unassigned object>, parameter_additions=<sagemaker_core.main.utils.Unassigned object>, parameter_removals=<sagemaker_core.main.utils.Unassigned object>)[source]
Update a FeatureMetadata resource
- Parameters:
- Returns:
The FeatureMetadata resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
FeatureMetadata | None
- class sagemaker_core.main.resources.FlowDefinition(*, flow_definition_name, flow_definition_arn=<sagemaker_core.main.utils.Unassigned object>, flow_definition_status=<sagemaker_core.main.utils.Unassigned object>, creation_time=<sagemaker_core.main.utils.Unassigned object>, human_loop_request_source=<sagemaker_core.main.utils.Unassigned object>, human_loop_activation_config=<sagemaker_core.main.utils.Unassigned object>, human_loop_config=<sagemaker_core.main.utils.Unassigned object>, output_config=<sagemaker_core.main.utils.Unassigned object>, role_arn=<sagemaker_core.main.utils.Unassigned object>, failure_reason=<sagemaker_core.main.utils.Unassigned object>)[source]
Class representing resource FlowDefinition
- Parameters:
flow_definition_name (str)
flow_definition_arn (str | None)
flow_definition_status (str | None)
creation_time (datetime | None)
human_loop_request_source (HumanLoopRequestSource | None)
human_loop_activation_config (HumanLoopActivationConfig | None)
human_loop_config (HumanLoopConfig | None)
output_config (FlowDefinitionOutputConfig | None)
role_arn (str | None)
failure_reason (str | None)
- flow_definition_arn
The Amazon Resource Name (ARN) of the flow defintion.
- Type:
str | None
- flow_definition_name
The Amazon Resource Name (ARN) of the flow definition.
- Type:
- flow_definition_status
The status of the flow definition. Valid values are listed below.
- Type:
str | None
- creation_time
The timestamp when the flow definition was created.
- Type:
datetime.datetime | None
- output_config
An object containing information about the output file.
- Type:
sagemaker_core.main.shapes.FlowDefinitionOutputConfig | None
- role_arn
The Amazon Resource Name (ARN) of the Amazon Web Services Identity and Access Management (IAM) execution role for the flow definition.
- Type:
str | None
- human_loop_request_source
Container for configuring the source of human task requests. Used to specify if Amazon Rekognition or Amazon Textract is used as an integration source.
- Type:
sagemaker_core.main.shapes.HumanLoopRequestSource | None
- human_loop_activation_config
An object containing information about what triggers a human review workflow.
- Type:
sagemaker_core.main.shapes.HumanLoopActivationConfig | None
- human_loop_config
An object containing information about who works on the task, the workforce task price, and other task details.
- Type:
sagemaker_core.main.shapes.HumanLoopConfig | None
- failure_reason
The reason your flow definition failed.
- Type:
str | None
- classmethod create(flow_definition_name, output_config, role_arn, human_loop_request_source=<sagemaker_core.main.utils.Unassigned object>, human_loop_activation_config=<sagemaker_core.main.utils.Unassigned object>, human_loop_config=<sagemaker_core.main.utils.Unassigned object>, tags=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Create a FlowDefinition resource
- Parameters:
flow_definition_name (str) – The name of your flow definition.
output_config (FlowDefinitionOutputConfig) – An object containing information about where the human review results will be uploaded.
role_arn (str) – The Amazon Resource Name (ARN) of the role needed to call other services on your behalf. For example, arn:aws:iam::1234567890:role/service-role/AmazonSageMaker-ExecutionRole-20180111T151298.
human_loop_request_source (HumanLoopRequestSource | None) – Container for configuring the source of human task requests. Use to specify if Amazon Rekognition or Amazon Textract is used as an integration source.
human_loop_activation_config (HumanLoopActivationConfig | None) – An object containing information about the events that trigger a human workflow.
human_loop_config (HumanLoopConfig | None) – An object containing information about the tasks the human reviewers will perform.
tags (List[Tag] | None) – An array of key-value pairs that contain metadata to help you categorize and organize a flow definition. Each tag consists of a key and a value, both of which you define.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
The FlowDefinition resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceInUse – Resource being accessed is in use.
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
ConfigSchemaValidationError – Raised when a configuration file does not adhere to the schema
LocalConfigNotFoundError – Raised when a configuration file is not found in local file system
S3ConfigNotFoundError – Raised when a configuration file is not found in S3
- Return type:
FlowDefinition | None
- delete()[source]
Delete a FlowDefinition resource
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceInUse – Resource being accessed is in use.
ResourceNotFound – Resource being access is not found.
- Return type:
None
- classmethod get(flow_definition_name, session=None, region=None)[source]
Get a FlowDefinition resource
- Parameters:
- Returns:
The FlowDefinition resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
FlowDefinition | None
- classmethod get_all(creation_time_after=<sagemaker_core.main.utils.Unassigned object>, creation_time_before=<sagemaker_core.main.utils.Unassigned object>, sort_order=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Get all FlowDefinition resources
- Parameters:
creation_time_after (datetime | None) – A filter that returns only flow definitions with a creation time greater than or equal to the specified timestamp.
creation_time_before (datetime | None) – A filter that returns only flow definitions that were created before the specified timestamp.
sort_order (str | None) – An optional value that specifies whether you want the results sorted in Ascending or Descending order.
next_token – A token to resume pagination.
max_results – The total number of items to return. If the total number of available items is more than the value specified in MaxResults, then a NextToken will be provided in the output that you can use to resume pagination.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
Iterator for listed FlowDefinition resources.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
ResourceIterator[FlowDefinition]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'protected_namespaces': (), 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- refresh()[source]
Refresh a FlowDefinition resource
- Returns:
The FlowDefinition resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
FlowDefinition | None
- wait_for_delete(poll=5, timeout=None)[source]
Wait for a FlowDefinition resource to be deleted.
- Parameters:
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
TimeoutExceededError – If the resource does not reach a terminal state before the timeout.
DeleteFailedStatusError – If the resource reaches a failed state.
WaiterError – Raised when an error occurs while waiting.
- Return type:
None
- wait_for_status(target_status, poll=5, timeout=None)[source]
Wait for a FlowDefinition resource to reach certain status.
- Parameters:
- Raises:
TimeoutExceededError – If the resource does not reach a terminal state before the timeout.
FailedStatusError – If the resource reaches a failed state.
WaiterError – Raised when an error occurs while waiting.
- Return type:
None
- class sagemaker_core.main.resources.Hub(*, hub_name, hub_arn=<sagemaker_core.main.utils.Unassigned object>, hub_display_name=<sagemaker_core.main.utils.Unassigned object>, hub_description=<sagemaker_core.main.utils.Unassigned object>, hub_search_keywords=<sagemaker_core.main.utils.Unassigned object>, s3_storage_config=<sagemaker_core.main.utils.Unassigned object>, hub_status=<sagemaker_core.main.utils.Unassigned object>, failure_reason=<sagemaker_core.main.utils.Unassigned object>, creation_time=<sagemaker_core.main.utils.Unassigned object>, last_modified_time=<sagemaker_core.main.utils.Unassigned object>)[source]
Class representing resource Hub
- Parameters:
- hub_name
The name of the hub.
- Type:
- hub_arn
The Amazon Resource Name (ARN) of the hub.
- Type:
str | None
- hub_status
The status of the hub.
- Type:
str | None
- creation_time
The date and time that the hub was created.
- Type:
datetime.datetime | None
- last_modified_time
The date and time that the hub was last modified.
- Type:
datetime.datetime | None
- hub_display_name
The display name of the hub.
- Type:
str | None
- hub_description
A description of the hub.
- Type:
str | None
- hub_search_keywords
The searchable keywords for the hub.
- Type:
List[str] | None
- s3_storage_config
The Amazon S3 storage configuration for the hub.
- Type:
sagemaker_core.main.shapes.HubS3StorageConfig | None
- failure_reason
The failure reason if importing hub content failed.
- Type:
str | None
- classmethod create(hub_name, hub_description, hub_display_name=<sagemaker_core.main.utils.Unassigned object>, hub_search_keywords=<sagemaker_core.main.utils.Unassigned object>, s3_storage_config=<sagemaker_core.main.utils.Unassigned object>, tags=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Create a Hub resource
- Parameters:
hub_name (str) – The name of the hub to create.
hub_description (str) – A description of the hub.
hub_display_name (str | None) – The display name of the hub.
hub_search_keywords (List[str] | None) – The searchable keywords for the hub.
s3_storage_config (HubS3StorageConfig | None) – The Amazon S3 storage configuration for the hub.
tags (List[Tag] | None) – Any tags to associate with the hub.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
The Hub resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceInUse – Resource being accessed is in use.
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
ConfigSchemaValidationError – Raised when a configuration file does not adhere to the schema
LocalConfigNotFoundError – Raised when a configuration file is not found in local file system
S3ConfigNotFoundError – Raised when a configuration file is not found in S3
- Return type:
Hub | None
- delete()[source]
Delete a Hub resource
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceInUse – Resource being accessed is in use.
ResourceNotFound – Resource being access is not found.
- Return type:
None
- classmethod get(hub_name, session=None, region=None)[source]
Get a Hub resource
- Parameters:
- Returns:
The Hub resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
Hub | None
- classmethod get_all(name_contains=<sagemaker_core.main.utils.Unassigned object>, creation_time_before=<sagemaker_core.main.utils.Unassigned object>, creation_time_after=<sagemaker_core.main.utils.Unassigned object>, last_modified_time_before=<sagemaker_core.main.utils.Unassigned object>, last_modified_time_after=<sagemaker_core.main.utils.Unassigned object>, sort_by=<sagemaker_core.main.utils.Unassigned object>, sort_order=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Get all Hub resources
- Parameters:
name_contains (str | None) – Only list hubs with names that contain the specified string.
creation_time_before (datetime | None) – Only list hubs that were created before the time specified.
creation_time_after (datetime | None) – Only list hubs that were created after the time specified.
last_modified_time_before (datetime | None) – Only list hubs that were last modified before the time specified.
last_modified_time_after (datetime | None) – Only list hubs that were last modified after the time specified.
sort_by (str | None) – Sort hubs by either name or creation time.
sort_order (str | None) – Sort hubs by ascending or descending order.
max_results – The maximum number of hubs to list.
next_token – If the response to a previous ListHubs request was truncated, the response includes a NextToken. To retrieve the next set of hubs, use the token in the next request.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
Iterator for listed Hub resources.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
ResourceIterator[Hub]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'protected_namespaces': (), 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- refresh()[source]
Refresh a Hub resource
- Returns:
The Hub resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
Hub | None
- update(hub_description=<sagemaker_core.main.utils.Unassigned object>, hub_display_name=<sagemaker_core.main.utils.Unassigned object>, hub_search_keywords=<sagemaker_core.main.utils.Unassigned object>)[source]
Update a Hub resource
- Returns:
The Hub resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Parameters:
- Return type:
Hub | None
- wait_for_delete(poll=5, timeout=None)[source]
Wait for a Hub resource to be deleted.
- Parameters:
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
TimeoutExceededError – If the resource does not reach a terminal state before the timeout.
DeleteFailedStatusError – If the resource reaches a failed state.
WaiterError – Raised when an error occurs while waiting.
- Return type:
None
- wait_for_status(target_status, poll=5, timeout=None)[source]
Wait for a Hub resource to reach certain status.
- Parameters:
- Raises:
TimeoutExceededError – If the resource does not reach a terminal state before the timeout.
FailedStatusError – If the resource reaches a failed state.
WaiterError – Raised when an error occurs while waiting.
- Return type:
None
- class sagemaker_core.main.resources.HubContent(*, hub_content_type, hub_content_name, hub_content_arn=<sagemaker_core.main.utils.Unassigned object>, hub_content_version=<sagemaker_core.main.utils.Unassigned object>, document_schema_version=<sagemaker_core.main.utils.Unassigned object>, hub_arn=<sagemaker_core.main.utils.Unassigned object>, hub_content_display_name=<sagemaker_core.main.utils.Unassigned object>, hub_content_description=<sagemaker_core.main.utils.Unassigned object>, hub_content_markdown=<sagemaker_core.main.utils.Unassigned object>, hub_content_document=<sagemaker_core.main.utils.Unassigned object>, sage_maker_public_hub_content_arn=<sagemaker_core.main.utils.Unassigned object>, reference_min_version=<sagemaker_core.main.utils.Unassigned object>, support_status=<sagemaker_core.main.utils.Unassigned object>, hub_content_search_keywords=<sagemaker_core.main.utils.Unassigned object>, hub_content_dependencies=<sagemaker_core.main.utils.Unassigned object>, hub_content_status=<sagemaker_core.main.utils.Unassigned object>, failure_reason=<sagemaker_core.main.utils.Unassigned object>, creation_time=<sagemaker_core.main.utils.Unassigned object>, hub_name=<sagemaker_core.main.utils.Unassigned object>)[source]
Class representing resource HubContent
- Parameters:
hub_content_type (str)
hub_content_name (str)
hub_content_arn (str | None)
hub_content_version (str | None)
document_schema_version (str | None)
hub_arn (str | None)
hub_content_display_name (str | None)
hub_content_description (str | None)
hub_content_markdown (str | None)
hub_content_document (str | None)
sage_maker_public_hub_content_arn (str | None)
reference_min_version (str | None)
support_status (str | None)
hub_content_dependencies (List[HubContentDependency] | None)
hub_content_status (str | None)
failure_reason (str | None)
creation_time (datetime | None)
hub_name (str | None)
- hub_content_name
The name of the hub content.
- Type:
- hub_content_arn
The Amazon Resource Name (ARN) of the hub content.
- Type:
str | None
- hub_content_version
The version of the hub content.
- Type:
str | None
- hub_content_type
The type of hub content.
- Type:
- document_schema_version
The document schema version for the hub content.
- Type:
str | None
- hub_name
The name of the hub that contains the content.
- Type:
str | None
- hub_arn
The Amazon Resource Name (ARN) of the hub that contains the content.
- Type:
str | None
- hub_content_document
The hub content document that describes information about the hub content such as type, associated containers, scripts, and more.
- Type:
str | None
- hub_content_status
The status of the hub content.
- Type:
str | None
- creation_time
The date and time that hub content was created.
- Type:
datetime.datetime | None
- hub_content_display_name
The display name of the hub content.
- Type:
str | None
- hub_content_description
A description of the hub content.
- Type:
str | None
- hub_content_markdown
A string that provides a description of the hub content. This string can include links, tables, and standard markdown formating.
- Type:
str | None
- sage_maker_public_hub_content_arn
The ARN of the public hub content.
- Type:
str | None
- reference_min_version
The minimum version of the hub content.
- Type:
str | None
- support_status
The support status of the hub content.
- Type:
str | None
- hub_content_search_keywords
The searchable keywords for the hub content.
- Type:
List[str] | None
- hub_content_dependencies
The location of any dependencies that the hub content has, such as scripts, model artifacts, datasets, or notebooks.
- Type:
List[sagemaker_core.main.shapes.HubContentDependency] | None
- failure_reason
The failure reason if importing hub content failed.
- Type:
str | None
- delete()[source]
Delete a HubContent resource
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceInUse – Resource being accessed is in use.
ResourceNotFound – Resource being access is not found.
- Return type:
None
- classmethod get(hub_name, hub_content_type, hub_content_name, hub_content_version=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Get a HubContent resource
- Parameters:
hub_name (str) – The name of the hub that contains the content to describe.
hub_content_type (str) – The type of content in the hub.
hub_content_name (str) – The name of the content to describe.
hub_content_version (str | None) – The version of the content to describe.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
The HubContent resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
HubContent | None
- get_all_versions(min_version=<sagemaker_core.main.utils.Unassigned object>, max_schema_version=<sagemaker_core.main.utils.Unassigned object>, creation_time_before=<sagemaker_core.main.utils.Unassigned object>, creation_time_after=<sagemaker_core.main.utils.Unassigned object>, sort_by=<sagemaker_core.main.utils.Unassigned object>, sort_order=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
List hub content versions.
- Parameters:
min_version (str | None) – The lower bound of the hub content versions to list.
max_schema_version (str | None) – The upper bound of the hub content schema version.
creation_time_before (datetime | None) – Only list hub content versions that were created before the time specified.
creation_time_after (datetime | None) – Only list hub content versions that were created after the time specified.
sort_by (str | None) – Sort hub content versions by either name or creation time.
sort_order (str | None) – Sort hub content versions by ascending or descending order.
max_results – The maximum number of hub content versions to list.
next_token – If the response to a previous ListHubContentVersions request was truncated, the response includes a NextToken. To retrieve the next set of hub content versions, use the token in the next request.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
Iterator for listed HubContent.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
ResourceIterator[HubContent]
- classmethod load(hub_content_name, hub_content_type, document_schema_version, hub_name, hub_content_document, hub_content_version=<sagemaker_core.main.utils.Unassigned object>, hub_content_display_name=<sagemaker_core.main.utils.Unassigned object>, hub_content_description=<sagemaker_core.main.utils.Unassigned object>, hub_content_markdown=<sagemaker_core.main.utils.Unassigned object>, hub_content_search_keywords=<sagemaker_core.main.utils.Unassigned object>, tags=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Import a HubContent resource
- Parameters:
hub_content_name (str) – The name of the hub content to import.
hub_content_type (str) – The type of hub content to import.
document_schema_version (str) – The version of the hub content schema to import.
hub_name (str) – The name of the hub to import content into.
hub_content_document (str) – The hub content document that describes information about the hub content such as type, associated containers, scripts, and more.
hub_content_version (str | None) – The version of the hub content to import.
hub_content_display_name (str | None) – The display name of the hub content to import.
hub_content_description (str | None) – A description of the hub content to import.
hub_content_markdown (str | None) – A string that provides a description of the hub content. This string can include links, tables, and standard markdown formating.
hub_content_search_keywords (List[str] | None) – The searchable keywords of the hub content.
tags (List[Tag] | None) – Any tags associated with the hub content.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
The HubContent resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceInUse – Resource being accessed is in use.
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
ResourceNotFound – Resource being access is not found.
- Return type:
HubContent | None
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'protected_namespaces': (), 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- refresh()[source]
Refresh a HubContent resource
- Returns:
The HubContent resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
HubContent | None
- wait_for_status(target_status, poll=5, timeout=None)[source]
Wait for a HubContent resource to reach certain status.
- Parameters:
- Raises:
TimeoutExceededError – If the resource does not reach a terminal state before the timeout.
FailedStatusError – If the resource reaches a failed state.
WaiterError – Raised when an error occurs while waiting.
- Return type:
None
- class sagemaker_core.main.resources.HubContentReference(*, hub_name, sage_maker_public_hub_content_arn, hub_arn, hub_content_arn, hub_content_name=<sagemaker_core.main.utils.Unassigned object>, min_version=<sagemaker_core.main.utils.Unassigned object>, tags=<sagemaker_core.main.utils.Unassigned object>)[source]
Class representing resource HubContentReference
- Parameters:
- sage_maker_public_hub_content_arn
The ARN of the public hub content to reference.
- Type:
- hub_arn
The ARN of the hub that the hub content reference was added to.
- Type:
- hub_content_arn
The ARN of the hub content.
- Type:
- min_version
The minimum version of the hub content to reference.
- Type:
str | None
- tags
Any tags associated with the hub content to reference.
- Type:
List[sagemaker_core.main.shapes.Tag] | None
- classmethod create(hub_name, sage_maker_public_hub_content_arn, hub_content_name=<sagemaker_core.main.utils.Unassigned object>, min_version=<sagemaker_core.main.utils.Unassigned object>, tags=<sagemaker_core.main.utils.Unassigned object>)[source]
Create a HubContentReference resource
- Parameters:
hub_name (str | object) – The name of the hub to add the hub content reference to.
sage_maker_public_hub_content_arn (str) – The ARN of the public hub content to reference.
hub_content_name (str | object | None) – The name of the hub content to reference.
min_version (str | None) – The minimum version of the hub content to reference.
tags (List[Tag] | None) – Any tags associated with the hub content to reference.
session – Boto3 session.
region – Region name.
- Returns:
The HubContentReference resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceInUse – Resource being accessed is in use.
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
ResourceNotFound – Resource being access is not found.
ConfigSchemaValidationError – Raised when a configuration file does not adhere to the schema
LocalConfigNotFoundError – Raised when a configuration file is not found in local file system
S3ConfigNotFoundError – Raised when a configuration file is not found in S3
- Return type:
HubContentReference | None
- delete(hub_content_type)[source]
Delete a HubContentReference resource
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Parameters:
hub_content_type (str)
- Return type:
None
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'protected_namespaces': (), 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class sagemaker_core.main.resources.HumanTaskUi(*, human_task_ui_name, human_task_ui_arn=<sagemaker_core.main.utils.Unassigned object>, human_task_ui_status=<sagemaker_core.main.utils.Unassigned object>, creation_time=<sagemaker_core.main.utils.Unassigned object>, ui_template=<sagemaker_core.main.utils.Unassigned object>)[source]
Class representing resource HumanTaskUi
- Parameters:
- human_task_ui_arn
The Amazon Resource Name (ARN) of the human task user interface (worker task template).
- Type:
str | None
- human_task_ui_name
The name of the human task user interface (worker task template).
- Type:
- creation_time
The timestamp when the human task user interface was created.
- Type:
datetime.datetime | None
- ui_template
- Type:
sagemaker_core.main.shapes.UiTemplateInfo | None
- human_task_ui_status
The status of the human task user interface (worker task template). Valid values are listed below.
- Type:
str | None
- classmethod create(human_task_ui_name, ui_template, tags=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Create a HumanTaskUi resource
- Parameters:
human_task_ui_name (str) – The name of the user interface you are creating.
ui_template (UiTemplate)
tags (List[Tag] | None) – An array of key-value pairs that contain metadata to help you categorize and organize a human review workflow user interface. Each tag consists of a key and a value, both of which you define.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
The HumanTaskUi resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceInUse – Resource being accessed is in use.
ResourceLimitExceeded – You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.
ConfigSchemaValidationError – Raised when a configuration file does not adhere to the schema
LocalConfigNotFoundError – Raised when a configuration file is not found in local file system
S3ConfigNotFoundError – Raised when a configuration file is not found in S3
- Return type:
HumanTaskUi | None
- delete()[source]
Delete a HumanTaskUi resource
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
None
- classmethod get(human_task_ui_name, session=None, region=None)[source]
Get a HumanTaskUi resource
- Parameters:
- Returns:
The HumanTaskUi resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
HumanTaskUi | None
- classmethod get_all(creation_time_after=<sagemaker_core.main.utils.Unassigned object>, creation_time_before=<sagemaker_core.main.utils.Unassigned object>, sort_order=<sagemaker_core.main.utils.Unassigned object>, session=None, region=None)[source]
Get all HumanTaskUi resources
- Parameters:
creation_time_after (datetime | None) – A filter that returns only human task user interfaces with a creation time greater than or equal to the specified timestamp.
creation_time_before (datetime | None) – A filter that returns only human task user interfaces that were created before the specified timestamp.
sort_order (str | None) – An optional value that specifies whether you want the results sorted in Ascending or Descending order.
next_token – A token to resume pagination.
max_results – The total number of items to return. If the total number of available items is more than the value specified in MaxResults, then a NextToken will be provided in the output that you can use to resume pagination.
session (Session | None) – Boto3 session.
region (str | None) – Region name.
- Returns:
Iterator for listed HumanTaskUi resources.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
- Return type:
ResourceIterator[HumanTaskUi]
- model_config: ClassVar[ConfigDict] = {'extra': 'forbid', 'protected_namespaces': (), 'validate_assignment': True}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- refresh()[source]
Refresh a HumanTaskUi resource
- Returns:
The HumanTaskUi resource.
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
ResourceNotFound – Resource being access is not found.
- Return type:
HumanTaskUi | None
- wait_for_delete(poll=5, timeout=None)[source]
Wait for a HumanTaskUi resource to be deleted.
- Parameters:
- Raises:
botocore.exceptions.ClientError – This exception is raised for AWS service related errors. The error message and error code can be parsed from the exception as follows:
` try: # AWS service call here except botocore.exceptions.ClientError as e: error_message = e.response['Error']['Message'] error_code = e.response['Error']['Code'] `
TimeoutExceededError – If the resource does not reach a terminal state before the timeout.
DeleteFailedStatusError – If the resource reaches a failed state.
WaiterError – Raised when an error occurs while waiting.
- Return type:
None
- wait_for_status(target_status, poll=5, timeout=None)[source]
Wait for a HumanTaskUi resource to reach certain status.
- Parameters:
- Raises:
TimeoutExceededError – If the resource does not reach a terminal state before the timeout.
FailedStatusError – If the resource reaches a failed state.
WaiterError – Raised when an error occurs while waiting.
- Return type:
None
- class sagemaker_core.main.resources.HyperParameterTuningJob(*, hyper_parameter_tuning_job_name, hyper_parameter_tuning_job_arn=<sagemaker_core.main.utils.Unassigned object>, hyper_parameter_tuning_job_config=<sagemaker_core.main.utils.Unassigned object>, training_job_definition=<sagemaker_core.main.utils.Unassigned object>, training_job_definitions=<sagemaker_core.main.utils.Unassigned object>, hyper_parameter_tuning_job_status=<sagemaker_core.main.utils.Unassigned object>, creation_time=<sagemaker_core.main.utils.Unassigned object>, hyper_parameter_tuning_end_time=<sagemaker_core.main.utils.Unassigned object>, last_modified_time=<sagemaker_core.main.utils.Unassigned object>, training_job_status_counters=<sagemaker_core.main.utils.Unassigned object>, objective_status_counters=<sagemaker_core.main.utils.Unassigned object>, best_training_job=<sagemaker_core.main.utils.Unassigned object>, overall_best_training_job=<sagemaker_core.main.utils.Unassigned object>, warm_start_config=<sagemaker_core.main.utils.Unassigned object>, autotune=<sagemaker_core.main.utils.Unassigned object>, failure_reason=<sagemaker_core.main.utils.Unassigned object>, tuning_job_completion_details=<sagemaker_core.main.utils.Unassigned object>, consumed_resources=<sagemaker_core.main.utils.Unassigned object>)[source]
Class representing resource HyperParameterTuningJob